

1 Empirical Analysis of the Causal Relationship between Nominal  
2 Exchange Rate and Foreign Direct Investment in India using  
3 VAR (Vector Autoregression Model)

4 J. V. Ramana Raju<sup>1</sup> and Dr. Mayuresh S. Gokhale<sup>2</sup>

5 <sup>1</sup> School of Graduate Studies, SBMJC, Bangalore.

6 *Received: 4 February 2012 Accepted: 1 March 2012 Published: 15 March 2012*

7

---

8 **Abstract**

9 The present study tries to establish a causal relationship between the nominal exchange rate  
10 and foreign direct investment in India using a time series data between 1992 and 2010. It tries  
11 to understand whether the fluctuation in the exchange rate in turn causes the change in the  
12 quantum of foreign direct investments inflows and vice-versa which is of enormous importance  
13 in the wake of unprecedented depreciation of Indian Rupee against US dollar. Our analysis  
14 uses unit root test and Johansen cointegration test to show whether the variables under  
15 consideration exhibit stationarity and a long run association respectively. The test indicates  
16 absence of any long term association between the two variables under consideration. In the  
17 present context it appears that the data is not stationary at level and is stationary at first  
18 difference. The Vector Auto regression (VAR) model depicts that the coefficients do not have  
19 any long run association.

20

---

21 **Index terms**— unit root, co integration, ADF (augmented dickey fuller), depreciation, foreign direct  
22 investment.

23 **1 Introduction**

24 The role of FDI to any nation is highly documented. It is known to be a source of much needed capital, technology  
25 and managerial skills. The developing nations are attracting the much needed source of foreign capital to boost  
26 their economies thus making their growth rates more sustainable. India is also not an exception to this trend  
27 and has taken steps to attract the much needed foreign capital to bolster its economy. However the torpid pace  
28 of economic reforms has created a sluggish environment as far as the movement of foreign capital in India is  
29 concerned. Also the second noticeable trend that has grappled Indian economy is the volatility of the rupee  
30 vis a vis major currencies especially the US Dollar and British Pound. The past year has witnessed a sharp  
31 depreciation of Indian Rupee against dollar which stands at over 19% in a single year. There are observations  
32 that indicate a strong correlation between the foreign capital inflows and valuation of a rupee 1 . Any aggressive  
33 depreciation in the exchange rate creates turmoil in the economy. It increases the firm's debt component on the  
34 loan borrowed from the foreign soil. The imports get dearer thereby having a cascading effect on the production  
35 costs and the product, thereby triggering inflation. The present study tries to understand the correlation between  
36 the exchange rate (USDollar verses INRupee) and foreign direct investment in the Indian economy between 1992  
37 and 2010. The question we are investigating here is: Does the fluctuation of the currency have a bearing in  
38 Inward foreign direct investment flow? The answer to this kind of question has different answers in different  
39 economies. The investigation for the Indian context reveals that the volatility of Indian rupee value does not  
40 affect in any way the quantum of inward flow of FDI. Thus our research confirms the theoretical observations of  
41 McCulloch (1989).

### 42 2 II.

### 43 3 Literature Review

44 The literature pertaining to the correlation between FDI and exchange rate in general is highly contradictory in  
45 nature and ambiguous, with some studies exhibiting a positive correlation, while others show negative correlation  
46 between the chosen variables. Cushman (1985) and Froot and Stein (1991) explore the factors that might  
47 contribute to correlation between external value of dollar and level of FDI in US. They have found that modelling  
48 a link between FDI and Exchange rate would require some beliefs in long run and short run deviation from PPP  
49 (Purchasing power parity) on cross border investment process.. Caves (1989), Froot and Stein(1991), Harris and  
50 Ravenscroft (1991) and Swenson (1993) has concluded that depreciating dollar is associated with higher flows  
51 of FDI in US and a higher foreign takeover premia. Dewenter (1995) examined this issue but no statistically  
52 significant relationship between the level of exchange rate and FDI. It was found that inflows of FDI will have no  
53 significant effects on nominal exchange rates in Sri Lanka. On the other hand Pakistan should take into account  
54 the effect of FDI inflows on the nominal exchange rates in short run although inconsequential in long run. 2  
55 McCulloch(1989) summarises that the exchange rate movements should not affect FDI inflows because if an asset  
56 in particular country is viewed as a claim to future stream of profits denominated in that country's currency,  
57 and if profits will be converted back to domestic currency of the investor at the same exchange rate, the level of  
58 exchange rate does not affect the present discounted value of the investment. A random walk characterization for  
59 exchange rate evolution process implies that the expected future exchange rate levels should be same as current  
60 rate. This implies perfect elasticity of exchange rate expectation to present exchange rate, a notion strongly  
61 contradicted by survey evidence like Franke and Froot (1987). Froot and Stein (1991) claimed that the level of  
62 exchange rate may influence the inward flow of FDI. The depreciation of the host currency makes the asset price  
63 cheaper thereby increases the ability of the firms to invest. Thus the depreciation of the host currency should  
64 increase the FDI and conversely the appreciation of the host country currency should decrease the FDI. Campa  
65 (1993) says the firms decision whether or not to invest abroad depends on the expectations of future profitability.  
66 An appreciation of host currency will increase FDI in to the host country, ceteris paribus, which is contrary to  
67 the prediction of Froot and Stein (1991). Thus the literature shows several contradictory facts and thus the issue  
68 warrants careful observation in a country specific manner.

### 69 4 III.

### 70 5 Objectives

71 We would like to empirically study the long and short run causal relationship between the nominal exchange rate  
72 and foreign direct investment in India during 1992 -2010 using a time series data. A vector autoregression model  
73 establishes the existence of such correlation.

74 IV.

### 75 6 Methodology

76 The method involves time series analysis of the IFDI (Inward foreign direct investment) and average nominal  
77 exchange rate data (between Indian rupee and USdollar) between 1992 and 2010 using . We use a unit root test  
78 to check stationarity of the time series data, and the Cointegration test for analyzing the long run association of  
79 the variables namely the foreign direct investment inflow and the average exchange rate between US Dollar and  
80 Indian Rupee. Since the time series of Exchange rates as well as the corresponding series for FDI do not exhibit  
81 stationarity, we go for an optimal lag selection through Akaike Information criterion. Also we use the Vector  
82 Auto regression (VAR) model to assess the long and short run correlation between the FDI and the exchange  
83 rate.

84 V.

### 85 7 Mathematical Aspects of our Methodology

86 In the present study we are trying to estimate the equations that define for the long run, the dependence of  
87 FDI with several macroeconomic variables. The usual procedure adopted for such estimation is Multivariate  
88 regression which leads to an equation of the form (1)  $1 2 3 3 \dots t t t n n t x g x g x g x e \dots$  ? ? ? ? ? .

89 . (1) The variables that we have considered are current FDI, current exchange rate, the lag values of FDI  
90 and the lag values of Exchange rate exhibit autocorrelations meaning that they exhibit dependencies on their  
91 lags. Hence autoregressive modeling is being taken up. A typical autoregressive model (AR(p)) of order p is used  
92 when the variables concerned are depending on 'p' lags. In (2) below we write the equation that models such  
93 an autoregressive process. We note that t e and t are stochastic terms incorporating the fluctuations or noises  
94 attributed to certain unexpected events happening. We also note that in our specific case the value of n is 4 and  
95 the value of p is 2. The equation ( ?? ) is a typical autoregressive model for a single variable. Let 1t y represent  
96 the variable in the AR model corresponding to 1t

97 x , 2t y represent the variable in the AR model corresponding to 2t

---

98 x and so on. Thus we have the vector Now if the white noise elements are not serially correlated than OLS  
99 schemes work out and hence a moving average representation leads to the final relationship. However if the white  
100 noise elements exhibit a serial correlation indicating that there exist linear dependencies among the n variables  
101 we have chosen, then the Relationship established by OLS scheme (Ordinary least squares) is not reliable and  
102 hence inaccurate. This leads to the concept of cointegration.

103 Cointegration : The Matrix representation given above leads to a characteristic equation as a polynomial in lag  
104 operators. If the process is stationary then as indicated in the previous section a moving average representation  
105 is feasible. This needs some tests to be done to check for existence of unit roots. Essentially it means one  
106 checks for the eigen values of the matrix obtained in the VAR model. If the eigen values are strictly bounded  
107 by 1, i.e  $1 \leq \lambda_i \leq 1$  then stationarity is guaranteed, else there is no stability in the VAR model even after taking p-lags.  
108 Here  $\lambda_i$  are the n eigen-values corresponding to the characteristic equation. This justifies the introduction  
109 of cointegrated variables, since here we assume that two or more variables in the n-variable time series move  
110 along in an integrated fashion (together). The technique of cointegration introduced by Granger develops a more  
111 reliable method to look for causality and hence may lead to better forecasting tools. Using the software E-views  
112 we estimate the cointegration coefficients so as to check the significance of short term and long term causality of  
113 exchange rate to influence FDI decisions.

114 In a typical VAR model involving two variables like Foreign direct Investment ( $Y_t$  FDI) and Exchange rate  
115 ( $X_t$  EXR),  $Y_t$  is influenced by current  $X_t$  and past values of  $X_t$  and similarly  $X_t$  is influenced by current  $Y_t$   
116 and past values of  $Y_t$ . More generally if one wishes to consider more variables, such variables are decided by  
117 economic principles and proper literature survey, while the number of lags is chosen by AIS test.

## 118 8 VI.

## 119 9 Findings

120 Our research had as its null hypothesis that Foreign direct Investment decisions are not influenced by the host  
121 country's nominal exchange rate. Johansen Cointegration test shows that the none of the variables under  
122 consideration are cointegrated, the trace statistics shows that the p value is  $> 5\%$  indicating that we cannot  
123 reject the Null Hypothesis. The Unit root test is a test to show whether the two variables under consideration  
124 i.e FDI (Foreign direct investment) and EXR (Exchange rate) are stationary or not.

125 The  $Y_t$  is significant with p value of 0.0000 and the FDI(-2) with coefficient C(2) is significant with p value  
126 of 0.0050. All the other coefficients are not significant indicating no long run correlation. Similarly Wald test  
127 was conducted to show the influence of two or more variables together on Independent variables i.e. C(3) and  
128 C(4) together, C(8) and C (9) together. Here the results we obtained show Chi square value with probability  
129 of 0.5246 and 0.4622 respectively indicating that the variables jointly cannot influence the dependent variable.  
130 Hence we see that there is no statistical evidence for the quantum of FDI investments into India to be dictated  
131 by the trends in nominal Exchange rate.

## 132 10 VII.

## 133 11 Conclusions

134 The exchange rate fluctuation essentially does not impair the quantum of foreign direct investment. It can be  
135 assumed that inward flow of direct investment is independent of exchange rate volatility. But the first lag and  
136 second lag of the foreign direct investment exhibits a significant relationship between the foreign direct investment  
137 indicating that the lagged FDI could be responsible for attracting FDI in the subsequent year. <sup>1 2 3 4</sup>

---

<sup>1</sup>T © 2012 Global Journals Inc. (US)

<sup>2</sup>©2012 Global Journals Inc. (US)

<sup>3</sup>© 2012 Global Journals Inc. (US)

<sup>4</sup>©2012 Global Journals Inc. (US)References Références Referencias



Figure 1:

Figure 2:

System: UNTITLED

Estimation Method: Least Squares

Date: 09/05/12 Time: 20:46

Sample: 1994 2010

Included observations: 17

Total system (balanced) observations 34

|                                 | Coefficient | Std. Error | t-Statistic | Prob.  |
|---------------------------------|-------------|------------|-------------|--------|
| C(1)                            | 1.697534    | 0.251837   | 6.740620    | 0.0000 |
| C(2)                            | -0.905518   | 0.292621   | -3.094508   | 0.0050 |
| C(3)                            | -149.2891   | 471.0752   | -0.316911   | 0.7541 |
| C(4)                            | 281.6353    | 410.0798   | 0.686782    | 0.4988 |
| C(5)                            | -3133.282   | 7066.626   | -0.443391   | 0.6615 |
| C(6)                            | -0.000174   | 0.000166   | -1.048213   | 0.3050 |
| C(7)                            | 0.000232    | 0.000193   | 1.197992    | 0.2426 |
| C(8)                            | 0.525049    | 0.311384   | 1.686180    | 0.1047 |
| C(9)                            | 0.257073    | 0.271066   | 0.948378    | 0.3524 |
| C(10)                           | 10.12907    | 4.671090   | 2.168460    | 0.0403 |
| Determinant residual covariance |             | 39499313   |             |        |

Figure 3:

138 .1 Appendix

139 Statistical Data Processing Output

140 [Dewenter ()] 'Do Exchange Rates Changes drive Foreign Direct Investment?'. K Dewenter . *Journ of Business*  
141 1995. 68 p. .

142 [Campa ()] 'Entry by Foreign Firms in the United States under Exchange rate Uncertainty'. Campa . *Review of*  
143 *Econ and Stat* 1993. 75 (4) p. .

144 [Caves ()] 'Exchange Rate Movements and Foreign Direct Investment in the United states'. R E Caves . *The*  
145 *Internationalization of US Markets*, D Audstretch, M Snd Claudon (ed.) 1989. p. .

146 [Froot and Stein ()] 'Exchange Rates and Direct Foreign Investment: An imperfect capital markets approach'.  
147 K Froot , J Stein . *Quarterly Journ Economics* 1991. 106 p. .

148 [Swenson (ed.) ()] *Foreign Mergers and Acquisitions in the United States* in "Foreign Direct, D Swenson .  
149 K.A.Froot (ed.) 1993. p. . National Bureau of Econ Research Inc.USA

150 [McCulloch ()] 'Japanese Investment in the United States'. McCulloch . *The Internationalization of US Markets*,  
151 D Audstretch, ClaudonM (ed.) 1989. p. .

152 [Cushmann ()] 'Real Exchange Rate Risk: Expectations and the level of direct Investment'. D Cushmann .  
153 *Review of Economics and Statistics* 1985. 67 p. .

154 [Harris and Ravenscroft ()] 'The role of acquisition in Foreign Direct Investment: Evidence from US Stock  
155 Market'. R S Harris , D Ravenscroft . *Journal of Finance* 1991. 46 p. .

156 [Chandrasekhar and Ghosh (2012)] 'The volatile Rupee' Article in "Business Line, C Chandrasekhar , Jayati  
157 Ghosh . May 1 2012.

158 [Jeffrey and Froot ()] 'Using Survey data to test standard propositions regarding Exchange rate expectations'.  
159 Frenkel Jeffrey , Kenneth Froot . *American Econ Review* 1987. 77 (1) p. .