

1 Large Trades on the Tunisian Stock Exchange: Downstairs 2 Versus Upstairs Stock Markets

3 Dr. Monia Antar Limem¹ and Jilani Faouzi²

4 ¹ University of Jendouba

5 *Received: 7 February 2012 Accepted: 1 March 2012 Published: 15 March 2012*

6 **Abstract**

7 This study examines the price impact differences between large trades routed to the central
8 market and blocks traded on the upstairs market, on the Tunisian Stock Exchange. The
9 results show that large transactions affect stock prices, whether they are routed upstairs or
10 downstairs. In addition, these price impacts are quite different depending on where the
11 execution takes place, especially around large sales. The results of empirical investigations
12 also show that, when an upstairs market is governed by too restrictive rules and when brokers
13 don't have the reflex or avoid trading upstairs, block market does not necessarily improve cost
14 execution.

17 **Index terms**— upstairs market, fragmentation, cost execution, price impact, and trade difficulty.

18 **1 Introduction**

19 With the development of the stock exchange markets, block trades became increasingly frequent and constitute a
20 substantial fraction of the total exchange volume of shares on the most active markets around the word. For
21 example, in the NYSE, 51% of the exchange volume are carried out on transactions of at least 10 000 stocks,
22 while in 1960, the block trades accounted only for 2% of the whole exchange's volume (Frino et al., 2003). This
23 is also the case of the Australian Stock Exchange, where more than 80% of the exchange volume is realized on
24 pieces of 10 000 shares and more (Anderson et al., 2006). In addition, on the Paris Bourse, the block market
25 is an important source of liquidity. Indeed, approximately 67% of orders containing more than 10 000 shares of
26 stocks are negotiated apart from the central market (Bessembinder and Venkataraman, 2004). This increased
27 tendency to negotiate in blocks finds its origin in the proliferation of the activities of institutional investors.

28 These large transactions can be carried out either at the central market or at the upstairs market. Although
29 the access to upstairs market is subjected to restrictive conditions, block markets are able to survive and to
30 develop. We even observed the development of new alternative exchange systems in order to negotiate large
31 pieces of capital such as the applications; the crossing networks or the dark pools (Oriol, 2008). The success of
32 these markets lies on the incapacity of the downstairs markets to respond to the modern requirements arising
33 from the institutionalization of Author : University of Jendouba. E-mail : monia.antar@gmai.com financial
34 markets. In fact, in the order books, we face the following obstacles. First, there is a difficulty in finding
35 adequate compensation, at any time. Secondly, the excessive transparency, which leads to mimetic behaviors,
36 can break the exchange. Besides, any large order is considered as informed, because it is impossible to detect
37 the true reasons of the exchange. Finally, the implicit execution costs are paradoxically higher for larger market
38 actors (Riva, 2000).

39 The characteristic of the block markets lies in the special work executed by block brokers, who can gather and
40 share the inherent risks accompanied by the absorption of a large block ??Burdett & O'Hara, 1987). Moreover,
41 these upstairs brokers have information about the unexpressed demand and can thus find quickly the necessary
42 pool to absorb a large block trade (Grossman, 1992).

43 In addition, the block market can filter investors. Thus, only uninformed investors enter the upstairs market
44 (Seppi, 1990). Based on these pioneers' works, several empirical studies have been conducted over the last decade

3 III. DATA AND DESCRIPTIVE STATISTICS

45 in different markets and across different periods in order to quantify and explain the impact of block trades on
46 asset prices.

47 It has been shown empirically, that large blocks are not without effects on the stock prices. Kraus and Stoll
48 (1972) were the first to explain these price impacts. They are due either to the short-run liquidity costs, which
49 mean that block initiator must make a price concession in order to bring the necessary counterpart. Alternatively,
50 they are the result of price pressures due to the inelastic supply and demand curves. Lastly, the informational
51 assumption stipulates that investors having superior information, prefer the negotiation of large blocks in order
52 to exploit their informational advantage and thus block trades are regarded as conveying information.

53 These price effects constitute the implicit costs undertaken by large investors. The literature has shown that
54 trading on the upstairs market minimizes these costs (Madhavan and Cheng, 1997). This result has been also
55 confirmed by Fong et Al (2004). In the same way, Bessembinder and Venkataraman (2004) find that large investors
56 undertake only 20% of the execution costs that they would have supported while trading in the order book.

57 The objective of this article is precisely to verify these assertions on a small emerging market, like the Tunis
58 Stock Exchange where the access terms to the block market are even more restrictive than those, previously
59 studied in the literature.

60 2 II. Block Trades in the Tunisian Stock Exchange

61 Tunisian Stock Exchange is a pure order-driven market where the confrontation of supply and demand orders
62 is supposed to be executed in an electronic and blind order book, which respects the price and time priority.
63 However, by similarity to the Paris market, the Tunisian Stock Exchange is a highly transparent structure where
64 brokers observe in real time the quantities and prices of transactions. They also acquire information about the
65 five best limits of the order book and their related agent codes. Such architecture as Muniesa (2003) explains
66 it, makes possible the quick pass from the order book to the telephone for the execution of the large orders.
67 The Tunisian Stock Exchange has created his upstairs market in 1997 in order to facilitate block trades. This
68 market was operating only for fifteen minutes after the close of the central market, and the Normal Block Size
69 (NBS) was arbitrarily fixed at 10 000 titles. Moreover, the market authorities may refuse a block trade if the
70 depth of the order book allows a centralized execution. We have to add to this, the fact that in order to accept a
71 decentralized execution, the stock must knew a movement in the central market for a minimal quantity of 1000
72 shares for stocks traded on the continuous auctions and 500 shares for those traded on the call auction (fixing).

73 However, the decree of April 15th, 2008, brings a revision to the regulation governing block trades. In this
74 sense, the Minimum Amount of a Block (MAB) is set at 100,000 TND, and a block trade can take place either
75 in the pre-opening period or during the continuous trading session. Besides, there was a repeal of the last two
76 conditions cited above. Nevertheless, the block brokers have the obligation to fill the limit orders of the trading
77 crowd. This is a considerable relief of the atmosphere on the block trading.

78 3 III. Data and Descriptive Statistics

79 In accordance with the article 88 of the General Regulation of the parquet, the Tunisian Stock Exchange specifies
80 in its daily bulletin in addition to the date of the trading session, the opening price, the closing price, the highest
81 and the lowest price as well as the exchanged volume, for all listed securities.

82 Besides the daily bulletins, we extract data from the consolidated order book also called market by limit. This
83 is composed for each financial instrument, of the five best limits of purchases classified in a decreasing order of
84 prices, and of the five best limits for the sales classified in ascending order of prices. For each limit, the total
85 quantity of the order book appears.

86 Concerning block trades, the data extend from 1 January 1999 to 30 November 2007. The data contain
87 complete records describing all trades taking place in the upstairs market. The collected information provides
88 for each block trade, the date, the code and the title of the security, as well as the price and the volume fields.
89 Furthermore, it was possible to obtain information regarding brokers' codes except for 2006 and 2007.

90 However, the data collected provides only the date as mentioned but not the precise time of the block trade.
91 So, due to the absence of intraday data we don't know exactly what time a specific transaction takes place and
92 when a buyer and a seller decide to move to the upstairs market. We will thus work based on interday data.

93 In addition to the above data, large on-market transactions' data were also collected. This data contains the
94 date and exact time, code value, volume and price of each transaction. An on-market trade is assimilated to
95 a block trade when the quantity traded equals or exceeds an NBS (set at 10,000 for all securities) and 100,000
96 TND. The NBS thus fixed, involves a considerable amount that can hardly find a counterpart within the quantity
97 available at the best limit. Therefore, a block is often carried out in several slices representing different limits
98 reached, and the marginal price is getting more and more unfavorable for the trade initiator.

99 Empirically, a market order may be executed against a series of limit orders. That is why several successive
100 and separate recordings in the database appear, while, in reality they are part of a single exchange. Consequently,
101 a sequence of transactions is combined and thus treated as a unique exchange, while the records are on the same
102 date and time.

103 A first step is thus to aggregate the quantities of securities with several records at the same time and to

104 calculate the weighted average price. Then, we only need to filter the data in order to obtain a sample in which
105 quantity is at least one NBS, and the total volume is equal to or greater than 100,000 TND.

106 However, the observation of simultaneous exchanges does not necessarily mean the execution of a large volume
107 against several limit orders. Indeed, in the opening of a session, there is a call auction and compensation at the
108 same price for a number of orders introduced during the pre-opening period, resulting in multiple records at the
109 same time. Thus, we exclude from our sample all volumes corresponding to the first exchange of the day.

110 The off-market trades and the large on-market ones, will be divided into transactions initiated by a buyer
111 and transactions initiated by a seller. This distinction is necessary since the price effects are opposite, and their
112 aggregation can neutralize them.

113 In our study, we classify the blocks as follows. We initially follow the work of ??rino et combination between
114 the "tick test" and the "bid-ask" method. Then we perform a second classification using the method of "the true
115 value" of Martinez et al (2005). A block is finally classified as buyer or seller initiated, when both classifications
116 converge.

117 Identifying the sense of a large on-market order is done without any ambiguity. A large on-market buy is
118 represented by a purchase order executed against several sell orders. While a large on-market sale is identified
119 when a sell order is executed against a series of purchase orders available in the other direction of the order book.

120 Table 1 describes the characteristics of transactions examined in this study. This reveals that whatever the
121 selected criterion of the size of the block (quantity or money, i.e. NBS or MBA) the results attest the superiority
122 of the size of block buys.

123 The average size is 7.449 NBS for block purchases and of 5.693 for the block sales. It is also noted that the
124 block sales are more concentrated around the average than the block buys with a standard deviation of 10,382
125 NBS against 17,113 NBS. The distribution by Fractiles of size shows that 10% of the block buys are greater than
126 16 NBS against 13,58 NBS for the block sales.

127 In the same way, the analysis of exchanged volumes in TND shows that a block sale implies an average volume
128 of 11.815 MAB against 15.524 MAB for the purchases. The median is of 4.944 MAB for the purchases, and it is
129 higher than that of the block sales, which equals to 4.348. Thus, we could say that the informational content
130 was bigger for the purchases than for the sales.

131 Since block buys are larger than block sales, the filtering hypothesis is thus rejected. The latter states that
132 the block market filters the investors. Thereby, only trades certified uninformed pass by the upstairs market.

133 This result can be explained as follows. On the Tunisian Stock Exchange, a block buyer is potentially informed,
134 if he passes by the central market, he faces the mimetic behavior and the illiquidity of the downstairs market. In
135 this sense, his buy could take several days, which could discourage him and push him to abandon his exchange.
136 Thus, passing through the upstairs market is the only possible alternative. On the other hand, a block seller can
137 divide his big order into a series of small ones, since it is more likely that he is motivated by liquidity needs.

138 It is expected therefore, that block buys to have a permanent price effect while block sales should cause
139 temporary effects. This is what we will verify by calculating the effects of block trades on asset prices.

140 In addition, the transactions, which reach or exceed 10,000 titles and 100,000 TND, do not all pass by the
141 block market. The simple presence of these large transactions in the order book shows that the central market
142 can be a sufficient source of liquidity for large investors.

143 Despite their low frequency of occurrence approximately 0.19% of all orders placed on the central order book,
144 orders of more than 10,000 titles represents a significant part of trading volume. Indeed, they represent almost
145 half of the volume traded on the Tunisian Stock Exchange (44.90%).

146 The average size of these transactions, whether they are a buyer or a seller initiated, is 2.6 NBS. Similarly,
147 the size expressed in MBA is approximately the same for large purchases and large sales on the central market,
148 and it is of more than 3 MBA. There is also a similarity in the number of observations of purchases and sales.

149 However, the data, whether expressed in NBS or MBA, shows that the size of the on-market transactions is
150 much smaller than that of blocks traded off-market. Thus, the block market seems to fulfill its role, which is the
151 execution of large trades.

152 4 IV.Impact of Large trades on Asset Prices

153 Price's behavior surrounding large trades is decomposed into temporary, permanent and total effects. The
154 calculation of these effects poses some problems. Indeed, to perform the calculations, we need the market
155 equilibrium price before the trade takes a place and the equilibrium price in this market after the trade takes
156 place.

157 Thus, the choice of the pre and post block price is delicate because, informational leaks can occur when the
158 block is being negotiated and also because of the possible delay in the market reaction following the exchange.

159 Following the works of Keim and Madhavan (1996), Ghysels and Cherkaoi (2003) and Gottardo and Murgia
160 (2003), we calculate price effects using closing prices with an inter day database. We report daily returns based,
161 for several pre-transaction intervals (namely, 1-day, 3-day, 6-day, and 20-day) before the block, and a couple of
162 post transaction intervals (1day,3day). The price's effects will be calculated as follows:Temporary Effect = (1)
163 Permanent Effect = (2) Total Effect =(3)

164 The results are presented in table 2 (Tab.2) We start by analyzing the price effects of offmarket exchanges
165 or block trades. Regarding block buys, we note a significant and positive total effect, which implies that prices

5 ESTIMATION OF THE PRICE IMPACT OF

166 increase before the block buy, and a non-significant temporary effect i.e. there is no price reversal a day and
167 three days after the block purchase. Thus, the slow and sustained increase in prices a month before the block
168 benefits to the whole market, and the effect is permanent.

169 For Block sales, the total effect is negative and significant, which means that if prices fell down before the
170 occurrence of a block sale, then we will have a significant price return which continues the following day and
171 three days after the block. Thus, price decline experienced by the share over a month, would be accompanied
172 by a very quick reversal so that the permanent effect is not significant and would even be a price reversal that
173 would exceed the price decline in that month. As a result, block sales cause a temporary drop in prices.

174 Thus, block purchases are accompanied by a permanent effect on asset prices while block sales induce a
175 temporary effect. These results are similar to those found by Gemmill (1996). Moreover, the price impact of
176 block sales is higher than that of block buys. This result is contradictory to the findings by Madhavan and Cheng
177 (1997). According to the authors, it is more probable that block sales are justified due to liquidity reasons, and
178 they are easier to arrange since brokers do not have to look for counterparts possessing the share. So their price
179 impact should be smaller. Our result may be explained by the fact that block sales intervene in a less favorable
180 context in terms of liquidity. We think that in the case of block purchases, investors show more patience. Now,
181 we pass to the analysis of the price impacts of large on-market transactions. The results are quite interesting in
182 the sense that they are different from those found in the literature. Indeed, we find that, large transactions either
183 sales or purchases, occur in a rising trend, i.e. the observed increase before the block is not directly related to
184 the large trade. Moreover, the rise comes always by far, and it is increasingly higher than that on the day before
185 the exchange. Following the exchange of the large order, we record a continuation in the upward movement.
186 This bullish tendency is maintained until the sixth day following the block transaction but without increasing
187 considerably.

188 shown in Table 2, the asset price experienced a rise of 4.8% over the previous month and over a 2.1% of the
189 increase a week before the exchange. No price reversal is observed after the large sale. On the contrary, we note
190 an increase of greater than 1.5% of asset price, which reach more than 1.9% a week after the big sale. This results
191 in a positive and significant permanent effect. This could be explained by the fact that investors decided to sell
192 their shares when they reach a desired level of profitability, and this decision does not break the bullish tendency.

193 As far as large purchases are concerned, we note that they occur in a context even more favorable compared
194 to the sales, as securities experience an average price rise of over 6.1% the month before the exchange or a rise of
195 almost 2.4% one week before the large buy and this increase is of more than 1.5% three days before the exchange.
196 This increase in prices also occurs after the trade and is practically half of the relative increase observed for the
197 sales. Indeed, the day after the large purchase, prices rise by more than 0.74% and reach nearly 1% three days
198 after. One could explain this by the fact that purchases occurred when stock prices had already begun a bullish
199 phase. Moreover, the fact of maintaining the rise shows that intermediaries should, in some ways, show to their
200 client that the stock for which they have directed the purchase "is doing well."

201 The direct comparison of the price impacts of large on-market transactions and block trades is inappropriate
202 since it ignores the difficulty of an exchange. Hence, in order to compare price impacts, we will adopt a
203 methodology similar to that of Fong et al (2004). It is a two-step procedure. In the first step, we use only
204 the large on-market trades, and we estimate the relationship between price impacts and various measures of
205 trade difficulty. The second step uses the estimated coefficients in the first stage with the characteristics of trades
206 routed to the upstairs market; in order to generate the price impacts of block trades if they had benefited from a
207 centralized execution. The price improvement will be the difference between the impact estimated in the second
208 step and the impact observed in the central market. Of course, we can speak about price improvement, only if
209 the difference is positive.

210 Based on the fact that block sales are preceded by a price fall in the central market then this decline is being
211 offset the next day and three days following the block trade. Thus, in the block market, we observe a rapid price
212 reversal that will more than compensate the decline of more than 2.3% recorded over one month.

213 On the other hand, the large sales traded on the central market always come in a bullish tendency and cause
214 a rise in prices. Thus, the behavior of large sales on and off market is so different, that no comparison can be
215 carried out correctly. That is why we opted only for a comparison between the price impacts of block buys and
216 large on-market buys.

217 V.

218 5 Estimation of the Price Impact of

219 Large On-Market Buys + + + + + (4)

220 With: : Represents the price impact of a large on-market buy.

221 : Is the trade size expressed as the logarithm of the number of shares. : Represents the average quoted spread
222 five days before the large on-market buy.

223 : Is the average Hi-Low spread five days before the large on-market buy : Is the logarithm of the average daily
224 dinar trading volume of the company of trade t five days before the large buy.

225 : Is the logarithm of the average market capitalization of the company of trade t in the same calendar year
226 Year : Is the residual term.

227 6 Concerning the large on-market sales, as

228 In this last version, we introduced seven dummy variables in order to control the year effect. Dummy variables
229 refer successively at years 2000 until 2007. We have of course omitted the year 2000 in order to avoid the problem
230 of multi colinearity. Similarly, we monitored the effect of sector affiliation by introducing four other dummy
231 variables. Thus, the financial sector, leasing, the car components and the « various » sector were controlled. The
232 heteroscedasticity is corrected according to the white procedure. The results of the estimates are presented in
233 tables 3 and 4 (Tab.3 and Tab.4). The first table reports the estimated coefficients of the explanatory variables of
234 the total effect and the temporary effect while the second relates to the estimated coefficients of the permanent
235 effect. Concerning the variable size, the coefficients are positive and significant for the total and the permanent
236 effect. Thus, the more important is the exchanged volume, the larger is the impact price. The bid ask spread is
237 non-significant in the majority of the regressions. When it is significant, its sign does not conform to expectations.
238 Indeed, Gemmill (1996), Frino et al. (2007) and Fong et al. (2004) find that the higher is the spread the
239 more important is the price impact. The volatility coefficient is significantly positive for the largest on-market
240 purchases. This reveals that the increase in volatility implies a higher price impact, in accordance with the work
241 of Chiyachantana et al. (2004). The coefficient of the average daily dinar trading volume five days before the
242 buy is positive. It is another proxy of liquidity, and the coefficient does not have the awaited Global Journal of
243 Management and Business Research Volume XII Issue XXII Version I 2012 Year sign. For the logarithm of the
244 average market capitalization, the sign is negative and significant for the permanent effect calculated by using
245 the benchmark post trade $t+3$. Thus, as explained by Fong et al. (2004), the larger the firm, the higher is the
246 interest of the financial analysts, and the bigger is the genesis of information. All this contributes to a reduction
247 of information asymmetry compared to the small sizes' firms. Thus, the difficulty of the exchange is reduced
248 with market capitalization.

249 The tables also give the values of the coefficient of determination. The last goes from, 2.88 percent for the
250 total effect of large buys calculated with the closing price of a day before the exchange, to 35.08 percent for the
251 permanent effect calculated from one month before the exchange until the day following it. For the remainder of
252 the regressions, the value of the adjusted R^2 climbs directly from 2.8 to 6.7%. In their model, Frino et al. (2007)
253 find that the coefficients of determination are going from 9 to 28.5 percent and affirm that their model explains
254 better than the best previous models the price changes. Our coefficient of determination is thus considered as
255 in the standard. Regarding the dummy variable relative to the year effect, there was an increase of the price
256 impact over the years (positive and significant). As for variables related to the sector affiliation, we note that
257 the permanent effect tends to increase mainly with the financial sector.

258 In order to test the proportion of the variation of the price impact explained by each explanatory variable, one
259 variable at a time is removed from the full model and we re-estimate the model. To determine if the omission of a
260 variable reduces the total significance of the model, we use the F test described by Greene (2003) who compares
261 the values of the coefficients of determination of the whole model and the restricted model. The F statistic used
262 is as follows:^{2 2} (5)

263 Where n is the number of observations, k is the number of parameter and R^2 is the coefficient of determination
264 of the full model and is the coefficient of determination of the alternate model.

265 The results are presented in Tables 5 and 6. The first reports the adjusted coefficients of determination of the
266 determinants of the total effect and the temporary effect and the second details those related to the permanent
267 effect. As first striking report, the increase in the adjusted R^2 follows the omission of the bid ask spread. Liquidity
268 approximated by the bid ask spread seems not to have any effect on the price impact, and its omission improves
269 the model. This result is in perfect contradiction with that of Frino et al. (2007) who find that the bid ask
270 spread is the variable that explains the best the price effects of large trades in the Australian Stock Exchange.
271 Furthermore, each of the other variables brings an additional explanatory power to the model. For example, if we
272 remove the variable quantity in the regression of the total effect calculated three days before the large purchase,
273 the adjusted R^2 strongly decreases and passes from 7.45 to 2.15 percent. If we omit the volatility variable, the
274 coefficient decreases significantly and passes from 35.08 to 28.53 percent (for the permanent effect on the period
275 $t-20$ until $t+1$). The omission of the variable volatility decreases the coefficient of determination in the majority
276 of the cases, in a significant way (in 10 regressions out of the 14). The volatility variable is the variable that
277 explains the best the price impact of large purchases on the Tunisian Stock Exchange. When we eliminate the
278 average daily trading volume five days before the block (calculated for the total effect one month before the
279 block), the adjusted R^2 drops from 33.98 to 29.46 percent.

280 Similarly, by abandoning the logarithm of the market capitalization, adjusted R^2 was considerably reduced,
281 especially for the temporary effect calculated three days after the purchase. When we ignore the variable year,
282 the coefficient also decreases and passes from 33.92 to 31.65 (for the permanent effect calculated from $t-20$ to t
283 +3). Likewise, the elimination of dummy variables relative to sector affiliation reduces the estimated coefficient
284 from 20.13 to 17.67 (for the total effect calculated from $t-6$). Cost Differences between a Large on-Market and a
285 Large off-market Buy on the Tunisian Stock Exchange

286 In this second step, we observe the variables related to the difficulty of the exchange, on the order book, when
287 a block purchase is being executed upstairs.

288 Thus, the calculated impact of a large block buy if it would have been run in the central order book is calculated
289 as follows:= 1 + 2 + 3 + 4 + 5 + 6 + .

7 CONCLUSION

290 The impact price refers to the total effect and the temporary effect. One variable, at a time, is removed
291 from the full model, and we re-estimate the alternate model. Statistical significance is derived from the F-test
292 of ??reene (2003). This tests whether the omission of a variable significantly affects the adjusted R². a and b
293 indicate statistical significance at 5% and 1% levels, respectively.= 1 + 2 + 3 + 4 + 5 + 6 + .

294 The impact price refers to the permanent effect. One variable, at a time, is removed from the full model, and
295 we reestimate the alternate model. Statistical significance is derived from the F-test of ??reene (2003). This tests
296 whether the omission of a variable significantly affects the adjusted R². a and b indicate statistical significance
297 at 5% and 1% levels, respectively.

298 Year+ + + + (6)

299 is the block size expressed in the logarithm of the number of shares. represents the average quoted spread five
300 days before the block buy.

301 is the average Hi-Low spread five days before the block buy is the logarithm of the average daily dinar trading
302 volume of the company of trade t five days before the block buy.

303 is the logarithm of the average market capitalization of the company of trade t in the same calendar year.

304 The cost difference between on and off-market execution is written as follows: (7) With is as defined above and
305 denotes the calculated impact of a block buy if it would have been rooted in the order book. is the price impact
306 of a block trade in the upstairs market as calculated in Chapter 3. If is positive, then there is price improvement
307 following the negotiation upstairs. If not, the block market increases the execution costs of the block trades.

308 The results summarizing the price differences are summarized in table 7. Concerning the total effect and
309 the temporary effect, the results show a significantly negative difference, sign of an increase in the impact price
310 following the realization of a transaction in the block market, rising from 1.2% to 1.6%.

311 Then the price reversal designated by the temporary effect is also higher. This difference in the temporary
312 effect is about 1.2% when the impact is calculated on the following day of the block trade and 1.8% when it
313 is calculated three days after the block. It shows a higher permanent effect (calculated between t-3 and t+1).
314 However, it should be noted that the difference is about 0.66%. Similarly, we observe instead an improvement
315 of the execution cost of 0.57% of the permanent effect calculated between t-1 and t 3. For the rest, there
316 is no significant difference in the permanent effects of large trades routed upstairs or on the central market.
317 These results are not similar to those of Fong et al. (2004) who find a strong obviousness of price improvement
318 on the block market. Indeed, even if the permanent effect varies just a bit according to the two methods of
319 negotiation, the Tunisian block market has got a long way to go. In fact, besides the very special architecture
320 that characterizes the access conditions to this particular segment, the intermediaries themselves have not the
321 reflex to route large orders to the block market. They make the counterpart search, negotiate the price by phone
322 but pass the transaction in the central market. Thus 35% of large exchanges made in the central market are
323 arrangements between intermediaries and imply a single transaction when a purchase order is executed against
324 a sell order.

325 In this way, if the order does not dig into market depth and have found its counterpart in a single order on
326 the opposite side of the book, there certainly has been a prior counterpart search by phone before placing of the
327 order in the book. In this scheme, the intermediaries should have passed the transaction by the block market
328 since they are not obliged to contribute to the market guarantee fund for block trades i VII.

329 7 Conclusion

330 . The literature treating of block trades shows, for most, that the prices continue to rise following block purchases
331 and know a price reversal following block sales. This result is also confirmed for the large onmarket trades. Thus,
332 prices react differently for buys and sales, and this makes a puzzling result. This article tries to test these price
333 effects on the Tunisian Stock Exchange and intends to go some way towards achieving the debate around the
334 price improvement occurring while trading in the upstairs market. The results show that block buys induce a
335 positive permanent effect while block sales induce only temporary effects.

336 On the other hand, we do observe significant positive permanent effects for both large sales and large purchases
337 negotiated on-market. Thus, we observe a different behavior for large sales following the place of execution.
338 Moreover, comparison of prices' effects of large purchases executed on and off the central market was made
339 taking into account the difficulty of the exchange. The results indicate that unlike those found by Fong et al
340 (2004), passing by the block market does not necessarily imply an improvement in trade costs. Indeed, when
341 the access terms to block market are very restrictive and when the intermediaries do not have the reflex to route
342 large orders to block market, price improvements are not systematic. ^{1 2}

¹©2012 Global Journals Inc. (US)

²© 2012 Global Journals Inc. (US)

Figure 1:

Large Trades on the Tunisian Stock Exchange: Downstairs versus Upstairs Stock Markets
2012
ear Y
2
and Business Research Volume XII Issue XXII Version I
Global Journal of Management

Figure 2:

7 CONCLUSION

1

Market	Upstairs Market	Panel 1 : Large buys	Downstairs Market	Year
Mean	7.449	15.524	2.644	3.513
Stand.	17.113	31.969	4.011	5.288
Deviation				
Fractile 90	16	42.881	5	6.312
Fractile 75	4.932	13.815	2.916	3.739
Median	2.028	4.944	1.63	2.105
Fractile 25	1.2	2.315	1	1.416
Minimum	0.895	1.05	1	1
Maximum	125	295.492	70	62.4
N	286	286	486	486
		Panel 2 : Large sales		
Mean	5.693	11.815	2.665	3.286
Stand.	10.382	24.089	5.981	5.160
Deviation				
Fractile 90	13.582	25.078	5	5.593
Fractile 75	4.9	8.85	2.5	3.374
Median	2.068	4.348	1.6	2.136

Figure 3: Table 1 :

2

Figure 4: Table 2 :

2012
ear Y
2
and Date t0 Upstairs Market t-1 t-6 Panel 1.
Business t+1 0.303 t-3 1.508 c 2.065 c Blockpurchases t-
Research t+3 a 1.369 c 1.926 c 1.811 20 t0 1.1 Temporary
Volume t+1 0.442 c 2.369 c Effect -0.743 c -0.982 c
XII Issue t+3 - 1.2 Permanent Effect
XXII t+1 2.019 1.941 c 1.985 c 1.802
Version I t+3 c - c 1.846 c 1.3 Total
2.778 Effect 2.244 c 2.288 c
c Panel 2. Blocksales
2.1 Temporary Effect
-1.539 c -1.764 c
Global t+1 2.2 Permanent Effect -0.325 b -0.275 a -0.401 a -0.289 0.433 b 0.483 b 0.357 0.469 2.3
Journal t+3
of Man-
agement

Figure 5:

2012
ear Y
2 16
and Business Research Volume XII Issue XXII Version I
Global Journal of Management
©2012 Global Journals Inc. (US)

Figure 6:

3

Variable	Coeff	Total Effect		Temporary Effect		
		t-1	t-3	t-6	t-20	t+1
Const	-0.09421		-0.17875	-0.27306	-0.46325	-0.07833
P value	(0.037) b		(0.019) b	(0.007) c	(0.026) b	(0.001) c
lsize	0.00702		0.01648	0.02271	0.04436	0.00285
P value	(0.095) a		(0.017) b	(0.006) c	(0.004) c	(0.637) (0.618)
Bas	0.06173		0.18618	0.07478	-0.86652	0.01455
P value	(0.754)		(0.542)	(0.844)	(0.067) a	(0.894) (0.481)
Volati	0.04743		1.00849	2.25379	5.01634	-0.39527
P value	(0.821)		(0.008) c	(0.000) c	(0.000) c	(0.036) b (0.786)
ldlyv	0.00010		0.00282	0.00882	0.02433	0.00018
P value	(0.920)		(0.086) a	(0.001) c	(0.000) c	(0.845) (0.494)
lcapi	0.00362		0.00302	0.00190	-0.00330	0.00400
P value	(0.089) a		(0.426)	(0.695)	(0.716)	(0.055) a (0.000) c
R ²		6.29%	10.69%	22.93%	36.30%	10.00%
Adjusted R ²		2.88%	7.45%	20.13%	33.98%	6.71%
N		486	486	486	486	486

Figure 7: Table 3 :

4

+

+

+

+

+

+

+

Where the price impact is the permanent effect. a , b , et c indicate statistical significance at 10%, 5% and 1% respectively.

Date					t+1		t+3	
Variable	Coef1	t-3	t-6	t-20	t-1	t-3	t-6	t-20
Const	-0.01587	-0.10041	-0.19473	-0.38492	0.16946	0.08492	-	-
							0.00939	0.19958
P value	(0.792)				(0.241)(0.076)	(0.068)(0.051)(0.437)	(0.941)	(0.349)
					a	a	a	
Lsize	0.00876	0.01822	0.02445	0.04610	0.00416		0.01363	0.01986
P value	(0.065)	a			(0.013)(0.006)	(0.005)(0.529)(0.120)	(0.046)	(0.010)
					b	c	c	b
Bas	0.04718	0.17163	0.06023	-0.88108	0.21239		0.33684	0.22544
							-	0.71586
P value	(0.850)				(0.600)(0.875)	(0.066)(0.545)(0.414)	(0.612)	(0.174)
					a			
Volati	0.44270	1.40376	2.64906	5.41161	-0.03458		0.92648	2.17178
P value	(0.111)				(0.000)(0.000)	(0.000)(0.924)(0.049)	(0.000)	(0.000)
					c	c	c	c
Ldlyv	-0.00008	0.00264	0.00864	0.02415	0.00125		0.00397	0.00996
P value	(0.953)				(0.115)(0.000)	(0.000)(0.509)(0.060)	(0.000)	(0.000)
					c	c	a	c
Lcapi	-0.00038	-0.00097	-0.00209	-0.00729	-0.01047	-0.01106		-
							-	0.01218
P value	(0.899)				(0.822)(0.694)	(0.420)(0.013)(0.038)	(0.049)	(0.063)
					b	c	b	a
R ²	11.65				13.40	23.80	37.35	11.81
AjustedR ²	8.44				10.25	21.03	35.08	8.60
N	486486				486	486	486	486
					486	486	486	486

Figure 8: Table 4 :

5

	large buys					
	Total Effect			Temporary Effect		
	t-1	t-3	t-6	t-20	t+1	t+3
Full	2.88	7.45	20.13	33.98	6.71	8.04
model						
Size	2.15	2.15 b	19.13 a	32.95 b	6.86	8.19
F-Stat	(3.53)	(26.78)	(5.86)	(7.28)	(-0.73)	(-0.76)

Figure 9: Table 5 :

6

t+1

Figure 10: Table 6 :

7 CONCLUSION

7

	P0	P-1	P-3	P-6	P-20
1.1 Temporary Effects					
P+1	-	(-7.15)			
	0.0121				
c					
P+3	-	(-4.90)			
	0.0183				
c					
1.2 Permanent Effects					
P+1	-0.0005		-0.0066 b	-0.0037	0.0075
	(-0.43)		(-3.14)	(-1.34)	(1.38)
P+3	0.0057 a		-0.0002	0 . 0024	0.0135 b
	(1.95)		(-0.06)	(0.62)	(2.10)
1.3 TotalEffects					
	-0.0127 c		-0.0189 c	-0.0161 c	-0.0047
	(-9.42)		(-9.17)	(-5.68)	(-0.92)

Figure 11: Table 7 :

343 .1 Appendices

344 i Is in the Management and Economic Sciences University of Jendouba, Tunisia. Corresponding author, Email
345 monia.antar@gmail.com II Is Professor in the Management and Economic Sciences University of Tunis, Tunisia.
346 Corresponding author, Emailfaouzi.jilani@fsegt.rnu.tn

347 iii This result is different from that found by Riva [2000] which underlines the superiority of the size of
348 the block sales. The author affirms that, as the block buys are more informative than the block sales, it is
349 thus http://www.bvmt.com.tn/documentation/statutor_y-texts/pdf/Reglement-FGM.pdf. Date of the last visit:
350 08/01/2009.

351 [Frino et al. ()] *Asymmetric price behavior surrounding block trades: A market microstructure explanation.*
352 *Working paper n°154, Centre of analytical finance*, A Frino , V Mollica , T Walter . 2003. university of
353 Aarhus, Aarhus School of Business.

354 [Anderson et al. ()] 'Block Trade Price Asymmetry and Changes in Depth: Evidence from the Australian Stock
355 Exchange'. H D Anderson , S Cooper , A Prevost . *The Financial Review* 2006. 41 (2) p. .

356 [Burdett et al. ()] 'Building blocks: An introduction to block trading'. K Burdett , &o , M Hara . *Journal of
357 Banking and Finance* 1987. 11 (2) p. .

358 [Muniesa ()] *Des marchés comme algorithme : Sociologie de la cotation électronique à la Bourse de Paris*, F
359 Muniesa . 2003. Nationale des Mines de Paris, Centre de Sociologie de l'Innovation (Ph.Dthesis. Ecole)

360 [Bessembinder and Venkataraman ()] 'Does an electronic stock exchange need an upstairs market?'. H Bessem-
361 binder , K Venkataraman . *Journal of Financial Economics* 2004. 73 p. .

362 [Ghysels and Cherkaoui ()] 'Emerging Markets and Trading Costs: Lessons from Casablanca'. E Ghysels , M
363 Cherkaoui . *Journal of Empirical Finance* 2003. 10 p. .

364 [Seppi ()] 'Equilibrium Block Trading and Asymmetric Information'. D J Seppi . *The Journal of Finance* 1990.
365 45 p. .

366 [Martinez et al. ()] 'Information Transmission around Block Trades on the Spanish Stock Exchange'. M A
367 Martinez , M Tapia , J Yzaguirre . *Applied Financial Economics* 2005. 15 (3) p. 173.

368 [Chiyachantana et al. ()] 'International evidence on institutional trading behavior and price impact'. C N
369 Chiyachantana , P K Jain , C Jiang , R A Wood . *Journal of Finance* 2004. 52 p. .

370 [Riva ()] *Le marché des blocs hors-Cac: Un supplément de liquidité pour la Bourse de Paris. Cahier du Cereg*
371 n°2000-01, F Riva . 2000. Université Paris Dauphine

372 [Madhavan and Cheng ()] A Madhavan , M Cheng . *Search of Liquidity: An Analysis of Upstairs and Downstairs*
373 *Trades*, 1997. 10 p. .

374 [Kraus and Stoll ()] 'Price Impacts of Block Trading on The New York Stock Exchange'. A Kraus , H R Stoll .
375 *The Journal of Finance* 1972. 27 p. .

376 [Frino et al. ()] 'The Determinants of the Price Impact of Block Trades: Further Evidence'. A Frino , A Lepone
377 , E Jarnebic . *Abacus* 2007. 43 p. .

378 [Grossman ()] 'The Informational Role of Upstairs and Downstairs Trading'. S J Grossman . *Journal of business*
379 1992. 65 p. .

380 [Keim and madhavan ()] *The Upstairs Market for Large Block Transactions: Analysis and Measurement of Price*
381 *Effects. The Review of Financial Studies*, D B Keim , A &madhavan . 1996. 9 p. .

382 [Oriol ()] 'Transactions de bloc, fragmentation, et directive Mif : Que peut-on apprendre des données historiques
383 de la place parisienne'. N Oriol . *Les cahiers scientifiques*, 2008. (département des études de l'AMF)

384 [Gemmill ()] 'Transparency and Liquidity: A Study of Block Trades on the London Stock Exchange under
385 Different Publication Rules'. G Gemmill . *Journal of Finance* 1996. 5 p. .

386 [Fong et al. ()] *Upstairs, Downstairs: Does the upstairs market harm the downstairs*, K Fong , A Madhavan , P
387 L Swan . 2004. (Unpublished Working Paper)

388 [Gottardo and Murgia ()] 'Working paper n°36, free university of Bozen-Bolzano Italy, school of economics.
389 natural to observe more block sales in the transparent market. iv Minimum Block Amount (MBA) is 100,000
390 dinars. v In accordance with the General Regulations of Exchange, block trades are excluded from the
391 guarantee mechanisms. Indeed, these off market transactions are similar to over the counter operations'.
392 P Gottardo , M Murgia . *Econometric analysis*, W H Greene (ed.) 2003. 2003. Pearson Education. (An
393 intermediary who participate in a block trade, chooses its counterpart and thus its risk"-Extract from the
394 market guarantee fund (specifications) Page 6 available at the following address. Fth edition)