

1 Forecasting the BDT/USD Exchange Rate using Autoregressive 2 Model

3 Md. Zahangir Alam¹

4 ¹ International Islamic University Chittagong, Dhaka Campus, Bangladesh.

5 *Received: 16 December 2011 Accepted: 31 December 2011 Published: 15 January 2012*

6

7 **Abstract**

8 The key motivation of this study is to examine the application of autoregressive model for
9 forecasting and trading the BDT/USD exchange rates from July 03, 2006 to April 30, 2010 as
10 in-sample and May 01, 2010 to July 04, 2011 as out of sample data set. AR and ARMA
11 models are benchmarked with a naïve strategy model. The major findings of this study is that
12 in case of in-sample data set, the ARMA model, whereas in case of out-of-sample data set,
13 both the ARMA and AR models jointly utperform other models for forecasting the BDT/USD
14 exchange rate respectively in the context of statistical performance measures. As per trading
15 performance, both the ARMA and naive strategy models outperform all other models in case
16 of in-sample data set. On the other hand, both the AR and naive strategy models do better
17 than all other models in case of out-of-sample data sets as per trading rformance.

18

19 **Index terms**— Forecasting, Autoregressive and Autoregressive Moving Average Models, and Naïve Strategy.

20 **1 Introduction**

21 Exchange rate is an important variable which influences decisions taken by the participants of the foreign exchange
22 market, namely investors, importers, exporters, bankers, financial institutions, business, tourists and policy
23 makers both in the developing and developed world as well. Timely forecasting of the exchange rates is able to
24 give important information to the decision makers as well as partakers in the area of the internal finance, buy
25 and sell, and policy making. However, the experimental literature be skeptical about the likelihood of forecasting
26 exchange rates accurately (Dua and Ranjan, 2011). The market where foreign exchange transactions are taken
27 place is the biggest as well the most liquid financial markets. The foreign exchange rate is one of the vital
28 economic indicators in the global monetary markets. For the giant multinational business units, an accurate
29 forecasting of the foreign exchange rates is crucial since it improves their overall profitability ??Huang et al.,
30 2004). In the past, the foreign exchange rates were fixed with extremely a small number of short-term variations.
31 Nowa -days, floating foreign exchange rates are prevailed in most of the countries. The recent financial turmoil
32 all over the world demonstrates the urgency of perfect information of the foreign exchange rates (Shim, 2000).

33 The series of foreign exchange rate demonstrates a higher volatility, complexity and noise which generate from a
34 mysterious market mechanism producing daily observations (Theodosiou, 1994). Forecasting of a given financial
35 variable is a vital task in the markets where financial transactions are taken place and positively helpful for the
36 stakeholders, namely practitioners; regulators; as well as policy formulators of this market (Pradhan and Kumar,
37 2010). In the financial as well as managerial decision making process, forecasting is a crucial element (Majhi et
38 al., 2009). Forecasting of the exchange rate is the foremost endeavors for the practitioners and researchers in the
39 spree of international finance, particularly in case of the exchange rate which is floating (Hu et al., 1999). Since
40 the breakdown of Breton-Wood system, prediction of the exchange rate is being more interested. To develop
41 models for forecasting the exchange rates is important in the practical and theoretical aspects. The importance of
42 forecasting the exchange rates in practical aspect is that an accurate forecast can render valuable information to
43 the investors, firms and central banks for in allocation of assets, in hedging risk and in formulating of policy. The

3 LITERATURE REVIEW

44 theoretical significance of an accurate forecasting exchange rate is that it has vital implications for efficient market
45 hypothesis as well as for developing theoretical model in the field of international finance (Preminger and Franck,
46 2005). Some corporate tasks that make forecasting the foreign exchange rate so important, namely hedging
47 decision, short-term financing decision, short-term investment decision, capital budgeting decision, earnings
48 assessment and long-term financing decision (Madura, 2006). To forecast exchange rate is a hectic task, but
49 this is an inevitable for taking financial decision in the era of internalization. The significance of the exchange
50 rates' forecasting stems from the reality that the findings of a given financial decision made today is conditional
51 on the exchange rate which will be prevailed in the upcoming period. For this reason forecasting exchange rate is
52 essential for a various international financial transactions, namely speculation, hedging as well as capital budgeting
53 (Moosa, 2008). To understand the movements of exchange rate is a tremendously challenging and essential task.
54 Efforts for deepening our understanding about the movements of exchange rate have taken some approaches.
55 Primarily, efforts concentrated to develop low-frequency basically based experimental models. The aim of model
56 estimation is to present an accurate forecast of exchange rate as well as to get better our understanding the
57 movements of exchange rate. The models could occasionally help to isolate the shortcomings of our knowledge
58 and put forward new way of research (Gradojevic and Yang, 2000). The outcomes of this study render all of the
59 mentioned rationales.

60 The motivation for this study is to investigate the use of auto regressive (AR) model, when applied to the task
61 of forecasting and trading of the BDT/USD exchange rate using the Bangladesh Bank (BB) fixing series.

62 2 II.

63 3 Literature Review

64 The likelihood to capture various patterns in the data as well as improvement of forecasting performance can be
65 enhanced through combining different models. A number of researches are conducted on forecasting and trading
66 financial series by the scholars and they suggest that by combining various models, forecasting accuracy can be
67 enhanced over an individual model. Khin et al. (2011) state that the economic market model of supply-demand's
68 ex-ante forecast is more perfect and efficient measured either in the context of its statistical decisive factor or
69 by optical immediacy with the actual prices. Pradhan and Kumar (2010) conducts a study on Forecasting
70 Exchange Rate in India: An Application of Artificial Neural Network (ANN) Model. and reveal that ANN
71 model is a successful tool for forecasting the exchange rate. Moreover, they reveal that it is possible to extract
72 information concealed in the exchange rate and to predict it into the upcoming. Sermpinis, Dunis and Laws
73 (2010) mention that the Psi and the Genetic Expression perform in the same way and their performance is
74 better among all models in the context of annualized returns and information ratio prior to and following the
75 application of the trading strategy. They also reveal that all models with the exception of ARMA demonstrate an
76 extensive augmentation in their trading performance in the light of annualized return. Dunis and Williams (2003)
77 investigate and analyse regression models' application in trading as well as investment along with the utilization of
78 forecasting foreign exchange rates and trading models. They benchmark NNR models with some other regression
79 based models and different forecasting techniques for determining their prospective added value like a predicting
80 and quantitative trading techniques. To evaluate the forecasting accuracy of the selected models, some statistical
81 measures namely MSE, MPAE, and so on are used as well as they use financial criteria, like returns risk-adjusted
82 reassures. They reveal that regression models, exactly NNR models have the capability for forecasting the
83 EUR/USD exchange rate returns within the sample period and insert value the same as the tool of forecasting
84 and quantitative trading as well. ??unis and Miao (2005a) reveal that the adding of the volatility filters
85 include the performance of the models in the respect of annualized return, maximum drawdown, risk -adjusted
86 Sharpe ratio and Calmar ratio. ??unis and Miao (2005b) state that the performance of straightforward carry
87 model is superior to the MACD model in the context of annualized return, risk-adjusted return and maximum
88 potential loss, whilst a collective carry or MACD model contains the least trading volatility, in addition of the
89 two volatility filters puts in noteworthy value to the different three studied modes' performance. Dunis, Laws
90 and Sermpinis (2008a) reveal that two neural network models, namely Higher Order Neural Network (HONN)
91 and Multilayer Perception (MLP) do significantly outperform compared to the other selected models in case of
92 a straightforward trading simulation. After incorporating transaction costs and applying leverage, they also find
93 that same network models beat all other selected models in respect of the annualized return, robust as well as
94 stable result. Dua and Ranjan (2011) do a study on modelling and forecasting the Indian RE/USD exchange,
95 governed by the managed floating foreign exchange rates regime, with vector autoregressive (VAR) and Bayesian
96 vector autoregressive (BVAR) models find that extension of monetary model for incorporating forward premium,
97 capital inflows' volatility as well as order flow is an effective way to improve forecasting accuracy of the selected
98 model. Furthermore, BVAR model usually beat their parallel VAR variants. According to Boero and Marrocu
99 (2002), the performance of linear models is better than non-linear models if concentration is constrained to MSFE.
100 Preminger, and Franck (2005) state that foreign exchange rate forecasting robust models have a tendency for
101 improving Autoregressive and Neural Network model's forecasting accuracy at each time sphere, as well as even
102 of random walk for predictions done at a one-month time -sphere. They also mention that robust models have
103 considerable market timing capability at each forecast horizons. Kamruzzaman and Sarker (2003) mention that all
104 the performance of all ANN related models are better than the ARIMA model. Furthermore, they reveal that all

105 the ANN based models are capable to predict the foreign exchange market closely. Bissoondeal et al. (2008)
106 conduct a research for forecasting foreign exchange rates with nonlinear models and linear models and reveal that
107 usually, NN models outperform compared to the time series models which are traditionally applied in forecasting
108 the foreign exchange rates. Philip, Taofiki and Bidemi (2011) compare the performance of two models which are
109 used to forecast the foreign exchange rates, namely Hidden Markov Model and Artificial Neural Network Model
110 and find that the percentage of ANN model's accuracy is more than Hidden Mark Model at 81.2% and 69.9%
111 respectively. Sosvilla-Rivero and ??003 do a research for forecasting the USD/EUR exchange rate and evaluate
112 the empirical significance PPP's expectation version for the study purpose. They find that the behavior of the
113 given study's predictors are significant better than the random walk in forecasting the exchange rate up to a
114 five-day period in terms of forecasts error as well as the directional forecast. Dunis and Huang (2001) state that
115 the majority trading strategies continue positive returns after incorporating transaction costs. Furthermore, they
116 mention that RNN models come into view as the most excellent sole modeling approach up till now. They also
117 reveal that the model combination that has the most excellent overall performance as per forecasting accuracy, be
118 unsuccessful to upgrade volatility trading outcomes whose basis are RNN. ??unis According to the Jarque-Bera
119 statistics, the BDT/USD return is non-normal at the confidence interval of 99%, since probability is 0.0000 which
120 is less than 0.01. So, it is required to transform the BDT/USD exchange rate series into the return series. c)
121 Transformation of the BDT/USD Exchange Rate Series

122 Generally, the movements of the foreign exchange rates are usually non-stationary as well as quite random
123 and not suitable for the study purpose.

124 The series of BDT/USD exchange rates is converted into returns by using the following equation:R t =(?? ??
125 ?? ??1)-1(1)

126 Where Figure 2 further disclose a slight positive skewness, 0.520318, and a higher positive kurtosis, 41.79787.
127 According to the Jarque-Bera statistics, the BDT/USD returns series is non-normal at the confidence interval of
128 99%, since probability is 0.0000 which is less than 0.01. f) Specification of the Model i.

129 4 Benchmark Model

130 An autoregressive model and an autoregressive moving average model are benchmarked with a naïve strategy
131 model in this study.

132 5 a. Naïve Strategy

133 It takes the most up to date period change as the most excellent forecast of the change which would be occurred
134 in the future (Sermpinis, Dunis, and Laws, 2010). This forecasting model is expressed in the following way:?? ?
135 t+1 = Y t (2)

136 Where ?? ? t+1 = the forecast rate of return for the next period Y t = the actual rate of return at period
137 t The performance of the naïve strategy is appraised in the context of the trading performance by the way of a
138 simulated trading strategy.

139 ii. Autoregressive Model According to autoregressive model, a forecast is a function of previous values of the
140 time series (Hanke and Wichern, 2009). This model takes the following equation:y t =?+? 1 y t?1 + ?2 y t?2
141 +??+? p y t?p +u t (3)

142 Where, Y t = the actual rate of return at period t ? = constant ? = co-efficient u t = a white noise disturbance
143 term iii. Autoregressive Moving Average ModelYt = ? 0 + ? 1 Y t?1 + ? 2 Y t?2 + ?? ?+? p Y t?p + ? t ? w
144 1 ? t?1 ? w 2 ? t?2 ? ?? ?w q ? t?q (4)

145 Where, Y t = the dependent variable at time t Y t-1 , Y t-2 , and Y t-p = the lagged dependent variables ? 0
146 , ? 1 , ? 2 , and ? p = regression coefficients ? t = the residual term ? t?1 , ? t?2 , and ? t?p = previous values
147 of the residual w 1 , w 2 , and w q = weights g) Statistical and Trading Performance of the Model i.

148 6 Measures of the Statistical Performance of the Model

149 The statistical performance measures are, namely mean absolute error (MAE); mean absolute percentage error
150 (MAPE); root mean squared error (RMSE); and theil-u, are used to select the best model in This model represents
151 the present value of a time series depends upon it past values which is the autoregressive component and on the
152 preceding residual values which is the moving average component (Sermpinis, Dunis and Laws, 2010). The
153 ARMA (p,q) model has the following general form: the in-sample case and the out-of-sample case individually in
154 this study. For all four of the error statistics retained (RMSE, MAE, MAPE and Theil-U) the lower the output,
155 the better the forecasting accuracy of the model concerned.

156 ii.

157 7 Measures of the Trading Performance of the Model

158 The trading performance measures, like annualized return (?? ??); annualized volatility(?? ??); information
159 ratio (SR); and maximum drawdown (MD), are used to select the best model. That model's trading performance
160 would be the best whose annualized return, cumulative return, ratio information is the highest, and on the other
161 hand whose annualized volatility and maximum drawdown would be the lowest.

162 **8 IV.**

163 Empirical Results and Discussion a) Model Estimation i.

164 **9 AR(1) Model**

165 The table below shows the output of the AR (1) BDT/USD returns estimation: The estimated AR (1) model
166 takes the following form: $R_t = 0.0000249 - 0.283663R_{t-1}$ (5) The coefficient (with the exception of the constant)
167 of the estimated AR (1) is significant at the confidence interval of 95% (equation AR (1), since the probability
168 of its coefficient (except the constant) is less than 0.05.

169 ii.

170 **10 ARMA (1, 1) Model**

171 The following table shows the output of the ARMA (1,1) BDT/USD returns estimation:

172 The all coefficients (with the exception of the constant) of the estimated ARMA (1, 1) model are significant
173 at the confidence interval of 95%, since the probability of its each coefficient (except the constant) is less than
174 0.05. b) Statistical Performance i.

175 **11 In -Sample Statistical Performance**

176 The following table presents the comparison of the in-sample statistical performance results of the selected models.
177 Table 5 reveals that both the ARMA(1,1) and AR(1) models have the same and the lowest mean absolute error
178 (MAE) at 0.0019, whereas naïve strategy has the lowest MAE at 0.0033. The AR (1) model has the lowest
179 mean absolute percentage error (MAPE) at 58.04% followed by the ARMA (1,1) model; and naïve strategy at
180 58.35%; and 107.76% respectively. The ARMA(1,1) model has the lowest root mean squared error (RMSE) at
181 0.0043, whereas the AR(1) model has the second lowest RMSE at 0.0044 followed by the naïve strategy at 0.0073.
182 Therefore, the ARMA (1,1) model is the best performing model on the basis of in-samplestatistical performance
183 results, since this model is nominated as the best model three times, whereas the AR(1) model is nominated as
184 the best model twice and the naïve strategy model is nominated as the best model not a single time.

185 ii. Table 6 reveals that both the ARMA (1,1) and the AR(1) models have the same and the lowest mean
186 absolute error (MAE) at 0.0013, whereas naïve strategy has the second lowest at 0.0022. The AR (1) model
187 has the lowest mean absolute percentage error (MAPE) at 53.64% followed by the ARMA (1,1) and the naïve
188 strategy models at 59.12%; and 94.31% respectively. Both the ARMA (1,1) and the AR(1) models have the same
189 and the lowest root mean squared error (RMSE) at 0.0024, whereas the naive strategy has the second lowest at
190 0.0041. The ARMA(1,1) model has the lowest theil's inequality coefficient 0.7192 followed by the AR(1) model;
191 and the naïve strategy at 0.7391; and 0.8109 respectively. Therefore, both the ARMA (1,1) and AR(1) model
192 are the best performing model on the basis of out -of -sample statistical performance results, since these two
193 models are nominated as the best model three times, whereas the the naïve strategy model is nominated as the
194 best model not a single time.

195 **12 Out -Of-Sample Statistical Performance**

196 **13 c. Trading Performance i. In-Sample Trading Performance**

197 The following table shows the comparison of the in-sample trading performance results of the selected models.
198 ii.

199 **14 Out-Of-Sample Trading Performance**

200 The following table demonstrates the comparisons of the out-of-sample trading performance results of the selected
201 models.

202 **15 Conclusion**

203 Techniques of forecasting foreign exchange rates depend upon the efficient market hypothesis are the shortcomings
204 and in the real world, market inefficiencies are existed. However, foreign exchange markets are comparatively
205 efficient and the opportunity

206 **16 Year**

207 The following table demonstrates the comparison of the out-of-sample statistical performance results of the
208 selected models.

209 to hold a strategy for making abnormal return is reduced (Dunis and Williams, 2003). The average Sharpe
210 ratio of the foreign exchange managed future industry is merely 0.80 and for running a profitable foreign exchange
211 trading desk, more than 60% winning trades is needed (Grabbe, 1996). Moreover, the Sharpe ratio of all models
212 except the naive strategy is more than 0.80 in case of in-sample trading performance outcomes and the ARMA
213 (1,1) model has the highest at 3.85. On the other hand, the Sharpe ratio of both the ARMA (1,1) model and

214 the AR (1) model are more than 0.80, whereas the naive strategy model are less than 0.80 and the AR (1) model
215 has the highest at 3.69 in case of the validation trading performance results (out-of-sample).

216 On the basis of the overall findings of this study, it can be concluded that in case of in-sample the ARMA (1,1)
217 model, whereas both the ARMA (1,1) and AR(1) models are capable to add value significantly to the forecasting
218 and trading BDT/USD exchange rate in the context of statistical performance measures. On the other hand, the
219 naive strategy and ARMA (1,1) models in case of in-sample, whereas both the AR(1) and naive strategy models
220 in case of out-of-sample can add value significantly for forecasting and trading BDT/USD exchange rate on the
221 basis of trading performance.

222 In this study, only two models, namely an AR model and an ARMA model are benchmarked only with a naive
223 strategy model. The naive strategy model is merely evaluated in the context of the trading performance. Some
224 limitations are reflected in case of the estimated models, namely the estimated ARMA (1,1), and AR(1) models
225 are not normally distributed, serial correlation of the residuals of the estimated ARMA (1,1) and AR(1) models
226 is present, and the variances of the estimated ARMA (1,1), and AR(1) models are not constant. Appropriate
227 transformation of the original model, application of the Newey-West method, and changing the data frequency
or using the generalized least squares method can be considered to overcome the indentified shortcomings.

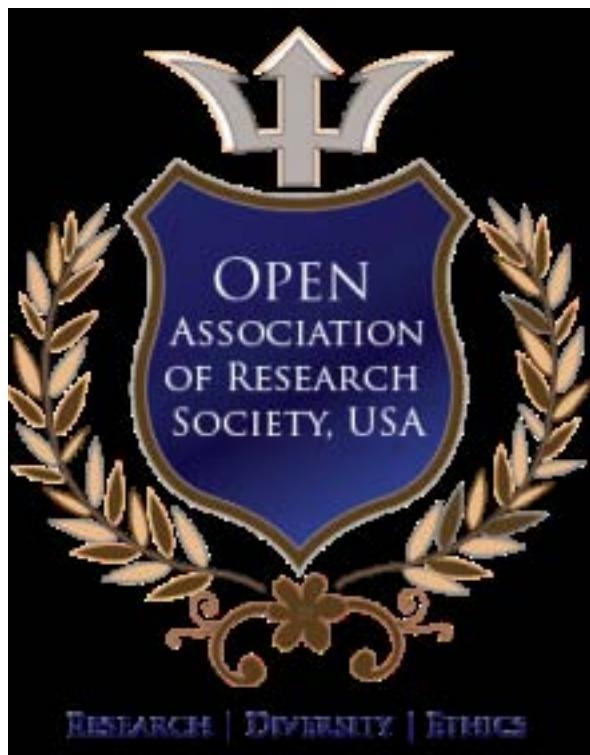


Figure 1:

228
229 1

III. Data and Methodology

a)

Data

Series: EXCHANGE

Sample 1 1307

Observations 1307

Mean	69.09333
Median	68.75000
Maximum	74.20000
Minimum	63.94000
Std. Dev.	1.362617
Skewness	1.359303
Kurtosis	7.258467
Jarque-Bera	1390.068
Probability	0.000000

Figure 2:

1

t-Statistic

Prob.*

[Note: *MacKinnon (1996) one-sided *p*-values.]

Figure 3: Table 1 :

1

Figure 4: Table 1

2

Adj. t-Stat

Prob.*

[Note: * MacKinnon (1996) one-sided *p*-values.]

Figure 5: Table 2 :

2

Figure 6: Table 2

3

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	2.49E-05	0.000107	0.231425	0.8170
AR(1)	-0.283663	0.030369	-9.340439	0.0000

Figure 7: Table 3 :

4

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	1.45E-05	8.29E-05	0.174879	0.8612
AR(1)	0.185091	0.086714	2.134494	0.0330
MA(1)	-0.505725	0.076194	-6.637337	0.0000

The estimated ARMA (1, 1) model takes the following form:

$$R_t = 0.0000145 + 0.185091Y_{t-1} - 0.505725Y_{t-2}$$

Figure 8: Table 4 :

5

Particulars	Naive Strategy	ARMA (1,1)	AR(1)
Mean Absolute Error	0.0033	0.0019	0.0019
Mean Absolute Percentage Error	107.76%	58.35%	58.04%
Root Mean Squared Error	0.0073	0.0043	0.0044
Theil's Inequality Coefficient	0.8011	0.7241	0.7470

Figure 9: Table 5 :

6

Particulars	Naive Strategy	ARMA (1,1)	AR(1)
Mean Absolute Error	0.0022	0.0013	0.0013
Mean Absolute Percentage Error	94.31%	59.12%	53.64%
Root Mean Squared Error	0.0041	0.0024	0.0024
Theil's Inequality Coefficient	0.8109	0.7192	0.7391

Figure 10: Table 6 :

7

Particulars	Naive Strategy	ARMA(1,1)	AR (1)
Annualised Return	-11.59%	23.38%	13.39%
Annualised Volatility	6.19%	7.06%	7.16%
Sharpe Ratio	-1.87	3.31	1.87
Maximum Drawdown	-48.91%	-5.26%	-6.18%

Figure 11: Table 7 :

7

reveals that the ARMA (1,1) model has

the highest annualized return at 23.38% . The naïve

strategy has the lowest annualized volatility at 6.19%. In addition, ARMA (1,1) model has the highest Sharpe ratio at 3.31. The naïve strategy model has the lowest downside risk as measured by maximum drawdown at -48.91%. Therefore, both the naïve strategy and ARMA (1,1) models might be selected as the overall best

model in - sample trading performance, since these models are nominated as the best models the highest times.

Figure 12: Table 7

8

Particulars	Naive Strategy	ARMA(1,1)	AR (1)
Annualised Return	-8.96%	13.54%	14.49%
Annualised Volatility	2.89%	3.94%	3.93%
Sharpe Ratio	-3.10	3.44	3.69
Maximum Drawdown	-10.92%	-1.11%	-1.28%

Figure 13: Table 8 :

8

V.

Figure 14: Table 8

Phillips-Perron Test Equation
 Dependent Variable: D(EXCHANGE)
 Method: Least Squares
 Date: 08/26/11 Time: 11:46
 Sample (adjusted): 2 1307

Included observations: 1306 after adjustments

Variable	Coefficient	Std. Error	t- Statistic	Prob.
EXCHANGE(-1)	-0.017108	0.005826	- 2.936312	0.0034
C	1.186782	0.402624	2.9476100033	
R-squared	0.006568	Mean dependent var	0.004778	
Adjusted R-squared	0.005807	S.D. dependent var	0.286197	
S.E. of regression	0.285365	Akaike info criterion	0.331435	
Sum squared resid	106.1889	Schwarz criterion	0.339359	
Log likelihood	-214.4270	Hannan-Quinn criter.	0.334408	
F-statistic	8.621929	Durbin-Watson stat	2.531255	
Prob(F-statistic)	0.003380			

A.3 EViews7 Output of AR(1) Model

Dependent Variable: RETURN

Method: Least Squares

Date: 08/26/11 Time: 12:28

Sample (adjusted): 2 1000

Included observations: 999 after adjustments

Convergence achieved after 3 iterations

Variable	Coefficient	Std. Error	t- Statistic	Prob.
C	2.49E-05	0.000107	0.2314258170	
AR(1)	-0.283663	0.030369	- 9.340439	0.0000
R-squared	0.080465	Mean dependent var	2.48E-05	
Adjusted R-squared	0.079543	S.D. dependent var	0.004546	
S.E. of regression	0.004361	Akaike info criterion	- 8.030117	
Sum squared resid	0.018963	Schwarz criterion	- 8.020294	
Log likelihood	4013.044	Hannan-Quinn criter.	- 8.026384	
F-statistic	87.24379	Durbin-Watson stat	2.019434	
Prob(F-statistic)	0.000000			
Inverted AR Roots	-28			

A.4 EViews7 Output of ARMA(1,1) Model

Dependent Variable: RETURN

Method: Least Squares

Date: 09/07/11 Time: 11:38

Sample (adjusted): 2 1000

Included observations: 999 after adjustments

Convergence achieved after 6 iterations

MA Backcast: 1

Variable	Coefficient	Std. Error	t- Statistic	Prob.
C	91.45E-05	8.29E-05	0.1748798612	
AR(1)	0.185091	0.086714	2.1344910330	
MA(1)	-0.505725	0.076194	- 6.637337	0.0000

230 .1 Appendices

231 [Grossman and Rogoff] , G Grossman , K Rogoff . *Handbook of International Economics* 3 p. .

232 [Hu ()] *A Cross Validation Analysis of Neural Network Out-of-Sample Performance in Exchange Rate Forecasting. Decision Sciences*, Y M Hu . 1999. 30 p..

233 [Dunis and Williams ()] ‘Applications of Advanced Regression Analysis for Trading and Investment’. C Dunis , L Williams , M . *Applied Quantitative Methods for Trading and Investment*, C L Dunis, J Laws, P Naim (ed.) 2003. John Wiley & Sons Ltd. p. .

234 [Philip et al. ()] ‘Artificial Neural Network Model for Forecasting Foreign Exchange Rate’. A Philip , A Taofiki , A , A Bidemi , A , A . *World of Computer Science and Information Technology Journal* 2011. 1 (3) p. .

235 [Bails and Peppers ()] D G Bails , L C Peppers . *Business Fluctuations-Forecasting Techniques and Applications*. 2 nd, (USA) 1993. Prentice-Hall.

236 [Brooks ()] C Brooks . *Introductory Econometrics for Finance*. 2 nd ed, (Cambridge) 2008. Cambridge University Press.

237 [Hanke and Wichern ()] *Business Forecasting*. 9 th Edn, J Hanke , E Wichern , D , W . 2009. London: Person Prentice Hall.

238 [Kamruzzaman and Sarker ()] ‘Comparing ANN Based Models With ARIMA For Prediction of Forex Rates’. J Kamruzzaman , R Sarker , A . *Asor Bulletin* 2003. 22 (2) p. .

239 [Majhi ()] ‘Efficient Prediction of Exchange Rates with Low Complexity Artificial Neural Network Models’. R Majhi . *Expert Systems with Applications* 2009. 36 (1) p. .

240 [Meese and Rogoff ()] ‘Empirical Exchange Rate Models of the Seventies: Do They Fit Out of Sample’. R Meese , K Rogoff . *Journal of International Economics* 1983. 14 p. .

241 [Frankel and Rose ()] *Empirical Research on Nominal Exchange Rates*, J A Frankel , A K Rose . 1995.

242 [Sun ()] *Exchange Rate Forecasting with An Artificial Neural Network Model: Can We Beat a Random Walk Model?*, Y Sun . 2005. Lincoln University (MCM Thesis)

243 [Dunis and Huang (2001)] *Forecasting and Trading Currency Volatility: An Application Of Recurrent Neural Regression and Model Combination*. CIBEF Working Paper, Liverpool Business School, available at www.cibef.com, C Dunis , L Huang , X . 2001. July 2011. p. 5.

244 [Sermpinis et al. ()] *Forecasting and Trading the EUR/USD Exchange Rate with Gene Expression and Psi Sigma Neural Networks*, G Sermpinis , C Dunis , L Laws , J . 2010.

245 [Panda and Narasimhan ()] ‘Forecasting Daily Foreign Exchange Rate in India with Artificial Network’. C Panda , V Narasimhan . *The Singapore Economic Review* 2003. 48 (2) p. .

246 [Pradhan and Kumar ()] ‘Forecasting Exchange Rate in India: An Application of Artificial Neural Network Model’. R Pradhan , P Kumar , R . *Journal of Mathematics Research* 2010. 2 (4) p. .

247 [Bissoondeeal et al. ()] ‘Forecasting exchange rates with linear and nonlinear models’. R K Bissoondeeal , J M Binner , M Bhuruth , A Gazely , V P Mootanah . *Global Business and Economics Review* 2008. 10 (4) p. .

248 [Preminger and Franck ()] *Forecasting Exchange Rates: A Robust Regression Approach*, A Preminger , R Franck . 2005.

249 [Moosa ()] ‘Forecasting the Chinese Yuan -US Dollar Exchange Rate Under the New Chinese Exchange Rate Regime’. E Moosa , A . *International Journal of Business and Economics* 2008. 7 (1) p. .

250 [Sosvilla-Rivero and García ()] ‘Forecasting the Dollar/Euro Exchange Rate: Are International Parities Useful’. S Sosvilla-Rivero , E García . *Journal of Forecasting* 2003. 24 (5) p. .

251 [Hanke and Reitsch ()] J E Hanke , A G Reitsch . *Business Forecasting*. 6 th ed, 1998. Prentice Hall.

252 [Grabbe ()] *International Financial Markets*, J O Grabbe . 1996. Englewood Cliffs: Prentice Hall. (3rd ed)

253 [Khin ()] A Khin , A . *A Comparison of Forecasting Abilities Between Univariate Time Series and Market Model of Natural Rubber Prices*. 2nd International Conference on Business and Economic Research Conference Proceedings, 2011.

254 [Cibef Working Paper (2011)] Liverpool Business School, available at www.cibef.com, accessed 25, Cibef Working Paper . June 2011.

255 [Madura ()] J Madura . *International Financial Management*, 2006. (8th ed. Mason: Thomson)

256 [Dua and Ranjan (2011)] *Modeling and Forecasting the Indian RE/US Dollar Exchange Rate*. CDE Working Paper, Delhi School of Economics, available at www.cdedse.org, P Dua , R Ranjan . 2011. August 2011.

257 [Dunis et al. (2008)] *Modeling and Trading the EUR/USD Exchange Rate at the ECB Fixing*. CIBEF Working Paper, Liverpool Business School, available at www.cibef.com, C Dunis , J Laws , G Sermpinis . 2008b. June 2011. p. 20.

284 [Dunis and Miao ()] 'Optimal Trading Frequency for Active Asset Management: Evidence from Technical
285 Trading Rules'. C L Dunis , J Miao . *Journal of Asset Management* 2005. 5 (5) p. .

286 [Shim ()] J K Shim . *Strategic Business Forecasting*, (London) 2000. Lucie Press. (Revised ed. St)

287 [Gradojevic and Yang ()] *The Application of Artificial Neural Networks to Exchange Rate Forecasting: The Role*
288 *of Market Microstructure Variables. FMD Working Paper, Bank of Canada*, N Gradojevic , J Yang . 2000.

289 [Boero and Marrocu ()] 'The Performance of Non-Linear Exchange Rate Models: A Forecasting Comparison'. G
290 Boero , E Marrocu . *Journal of Forecasting* 2002. 21 (7) p. .

291 [Dunis et al. (2008)] *The Robustness of Neural Networks for Modelling and Trading the EUR/USD Exchange*
292 *Rate at the ECB Fixing. CIBEF Working Paper, Liverpool Business School, available at www.cibef.com*, C
293 Dunis , L Laws , J Sermpinis , G . 2008a. July 2011. p. 8.

294 [Theodossiou ()] *The Stochastic Properties of Major Canadian Exchange Rates. The Financial*, P Theodossiou
295 . 1994.

296 [Dunis and Miao (2005)] *Trading Foreign Exchange Portfolios with Volatility Filters: The Carry Model Revisited.*
297 *CIBEF Working Paper, Liverpool Business School, available at www.cibef*, C L Dunis , J Miao . 2005. June
298 2011.