

1 Productivity Growth and Its Influence on the Dollar/Euro Real 2 Exchange Rate

3 Dr. Ordean Olson¹

4 ¹ Nova Southeastern University

5 *Received: 13 December 2011 Accepted: 1 January 2012 Published: 15 January 2012*

6

7 **Abstract**

8 This paper examines the evidence for a productivity based model of the dollar/euro real
9 exchange rate for the period 1985-2007 period. Cointegrating relationships between the real
10 exchange rate and productivity, real price of oil and government spending are estimated using
11 the Johansen and Stock-Watson procedures. The findings show that for each percentage point
12 in the US-Euro area productivity differential there is a three percentage point change in the
13 real dollar/euro valuation. These findings are robust to the estimation methodology, the
14 variables included in the regression, and the sample period.

15

16 **Index terms—**

17 **1 Introduction**

18 The euro greatly depreciated against the dollar during the period 1995-2001. This decline has often been associated
19 with relative productivity changes in the United States and the euro area over this time period. During this
20 time period in particular, average labor productivity accelerated in the United States, while it decelerated in the
21 euro area. Economic theory suggests that the equilibrium real exchange rate will appreciate after an actual or
22 expected shock in average labor productivity in the traded goods sector. Such an equilibrium appreciation may
23 be influenced in the medium term by demand side effects. Thus, productivity increases raise expected income,
24 which leads to an increased demand for goods. However, the price of goods in the traded sector is determined
25 more by international competition. By contrast, in the nontraded sector, where industries are not subject to the
26 same competition, goods prices tend to vary widely and independently across countries.

27 The work of Harrod (1933), Balassa (1964), and Samuelson (1964) show that productivity growth will lead to
28 a real exchange rate appreciation only if it is concentrated in the traded goods sector of an economy. Productivity
29 growth that has been equally strong in the traded and non-traded sectors will have no effect on the real exchange
30 rate.

31 Author : Economics Department Nova Southeastern University. H. Wayne Huizenga School of Business and
32 Entrepreneurship. 3301 College Ave. Fort Lauderdale, Florida USA. E-mail : olson@nova.edu From the first to
33 the second half of the 1990's, average productivity accelerated in the United States, while it decelerated in the euro
34 area. This relationship has stimulated a discussion on the relationship between productivity and appreciation
35 of the dollar during this time period. Also, of equal importance is the depreciation of the dollar during the
36 early part of the 2000's (United States productivity increased slowly while the euro area productivity increased
37 more rapidly). Bailey and Wells (2001), for instance, argue that a structured improvement in US productivity
38 increased the rate of return on capital and triggered substantial capital flows in the United States, which might
39 explain in part the appreciation of the US dollar during the early part of the 2000's. Tille and Stoffels (2001)
40 confirm empirically that developments in relative labor productivity can account for part of the change in the
41 external value of the US dollar over the last 3 decades. ??lquist and Chinn (2002) argue in favor of a robust
42 correlation between the euro area United States labor productivity differential and the dollar/euro exchange rate.
43 This would explain the largest part of the euro's decline during the latter part of the 1990's.

44 This paper presents the argument that the euro's persistent weakness in the 1995-2001 period and its strength
45 during the 2001-2007 period can be partly explained by taking into consideration productivity differentials. In

3 THE REAL EXCHANGE RATE AND PRODUCTIVITY DEVELOPMENTS

46 particular, the study analyses in detail the impact of relative productivity developments in the United States and
47 the euro area on the dollar/euro exchange rate.

48 The paper is organized with the first part being the introduction. The next section explains the relationship
49 between productivity advances and the real exchange rate from a theoretical perspective along with the data
50 gathering process. Section 3 deals with the estimation, the structural VECM and impulse response analysis.
51 Section 4 deals with tests for nonnormality and forecast error variance decomposition. Section 5 deals with a
52 discussion of results.

53 2 II.

54 3 The Real Exchange Rate and Productivity Developments

55 The theoretical relationships that link fundamentals to the real exchange rate in the long-run Year This
56 paper analyses the impact of relative productivity developments in the United States and the euro area on
57 the dollar/euro exchange rate. This paper then provides evidence on the long-run relationship between the
58 real dollar/euro exchange rate and productivity measures with and without the oil prices and government
59 spending variables. Importantly, to the extend that traders in foreign exchange markets respond to the available
60 productivity data stresses the importance of reliable models. center around the Balassa-Samuelson model,
61 portfolio balance considerations as well as the uncovered (real) interest rate parity condition. This study will
62 focus on the role of productivity differentials in the determination of the dollar/euro exchange rate.

63 According to the Balassa-Samuelson framework, the distribution of productivity gains between countries
64 and across tradable and non-tradable goods sectors in each country is important for assessing the impact of
65 productivity advances on the real exchange rate. The intuition behind the Balassa-Samuelson effect is rather
66 straight-forward. Assuming, for instance of simplicity, that productivity in the traded goods sector increases only
67 in the home country, marginal costs will fall for domestic firms in the traded-goods sector. This leads (under the
68 perfect competition condition) to a rise in wages in the traded goods sector at given prices. If labor is mobile
69 between sectors in the economy, workers shift from the non-traded sector to the traded sector in response to the
70 higher wages. This triggers a wage rise in the non-traded goods sector as well, until wages equalize again across
71 sectors. However, since the increase in wages in the non-traded goods sector is not accompanied by productivity
72 gains, firms need to increase their prices, which do not jeopardize the international price competitiveness of firms
73 in the traded goods sector Harrod (1933), Balassa (1964) and Samuelson (1964).

74 Tille, Stoffels and Gorbachev (2001) revealed that nearly two-thirds of the appreciation of the dollar was
75 attributable to productivity growth differentials (using the traded and nontraded differentials). However, it is
76 important to note that Engel (1999) found that the relative price of non-traded goods accounts almost entirely
77 for the volatility of US real exchange rates. . Accordingly, there should be a proportional link between relative
78 prices and relative productivity. Labor productivity, however, is also influenced by demand-side factors, though
79 their effect should be of a transitory rather than of a permanent nature.

80 In particular, as the productivity increases raise future income, and if consumers value current consumption
81 more than future consumption, they will try to smooth their consumption pattern as argued by (Bailey and
82 Wells 2001). This leads to an immediate increased demand for both traded and non-traded goods. The increase
83 in demand for traded goods can be satisfied by running a trade deficit. The increased demand for non-traded
84 goods, however, cannot be satisfied and will lead to an increase in prices of non-traded goods instead. Thus,
85 demand effects lead to a relative price shift and thereby to a real appreciation.

86 a) The Asymptotically Stationary Process of the Model This section presents evidence in favor of stable long-
87 run relationships between the real dollar/euro exchange rate, the productivity measure, and the other variables.
88 One model specification was estimated for the productivity measure. The sample covers the period from 1985 to
89 2007. The general model includes all variables discussed above as well as deterministic components.

90 The results of the autocorrelations and partial autocorrelations in figures 1-3 show that the autocorrelations
91 typically die out over time with increasing time as in the GDP, oil prices and US productivity variables. The
92 dashed lines are just $+/-/2/\sqrt{T}$ lines; consequently, they give a rough indication of whether the autocorrelation
93 coefficients may be regarded as coming from a process with true autocorrelations equal to zero. A stationary
94 process for which all autocorrelations are zero is called white noise or a white noise process. Clearly, all of the
95 series are not likely to be generated by a white noise process because the autocorrelations reach outside the area
96 between the dashed lines for more than 50% of the time series. On the other hand, all coefficients at higher lags
97 are clearly between the lines. Hence, the underlying autocorrelation function may be in line with a stationary
98 data gathering process. The partial correlations convey basically the same information on the properties of the
99 time series. Gov_Spending ??utkepohl (2004) states that autocorrelations and partial autocorrelations provide
100 useful information on specific properties of a data gathering process other than stationarity. Consistency and
101 asymptotic normality of the maximum likelihood estimators are required for the asymptotic statistical theory
102 behind the tests to be valid. The results of these tests are shown in the appendix (table 6). They consist of an
103 LM test of no error autocorrelation, an LM-type test of no additive nonlinearity, and another LM-type test of
104 parameter constancy. ??artlett (1950) and Parzen (1961) have proposed spectral windows to ensure consistent
105 estimators.

106 The autocorrelations of a stationary stochastic process may be summarized compactly in the spectral density
107 function. It is defined as $F_y(\omega) = (2\pi)^{-1} \int_{-\infty}^{\infty} y_j(\omega) e^{-i\omega j} d\omega$ (1)

108 Where $i = \sqrt{-1}$ is the imaginary unit, ω is the frequency, that is, the number of cycles in a unit of time
109 measured in radians, and the y_j 's are the autocovariances of y_t as before. It can be shown that $\sum_j y_j = \int_{-\infty}^{\infty} F_y(\omega) d\omega$ (2)

110 Thus, the autocovariances can be recovered from the spectral density function integral as follows: $\sum_j y_j = \int_{-\infty}^{\infty} F_y(\omega) d\omega$ (3)

111 Graph 1 shows the log of the smoothed spectral density estimator based on a Bartlett window with window
112 width $M_r = 20$.

113 Many economic time series have characteristics incompatible with a stationary data gathering process.
114 However, Lutkepohl (2004) recommends the use of simple transformations to move a series closer to stationarity.
115 A logarithmic transformation may help stabilize the variance. In figure 4 the logarithms of the US productivity,
116 M2, oil prices, US GDP, US/euro exchange rate and government spending are plotted. The logarithm is used as
117 it ensures that larger values remain larger than smaller ones.

118 The relative size is reduced, however. The series has an upward trend and a distinct seasonal pattern. The
119 series clearly has important characteristics of a stationary series. The empirical analysis employs cointegration
120 tests as developed by Johansen (1995). In the present setting, some variables would theoretically be expected to
121 be stationary, but appear to be near-integrated processes empirically.

122 The presence of the cointegration relationships is tested in a multivariate setting. Table 2 and 3 show the
123 results of the cointegration tests. Over all, the results suggest that it is reasonable to assume a single cointegration
124 relationship between the variables and suggest being viewed as an order of I(1). Significance at the 99%, 95% and
125 90% levels are noted by ***, ** and * respectively. The S and L critical values are taken from tables computed
126 by Saikkonen and Lutkepohl.

127 4 c) Data for Variables

128 For the period prior to 1999, the real dollar/euro exchange rate was computed as a weighted geometric average
129 of the bilateral exchange rates of the euro currencies against the dollar. In addition, the model was estimated
130 controlling for several other variables, which included US productivity, M2, oil prices, government spending
131 and US GDP. As regards the real price of oil, its usefulness for explaining trends in real exchange rates is
132 documented. For example, Amano and Van Norden (1998a and 1998b) found strong evidence of a long-term
133 relationship between the real effective exchange rate of the US dollar and the oil price. As regards government
134 spending, the fiscal balance constitutes one of the key components of national saving. In particular, Renzel and
135 Mussa (1985) argued that a fiscal tightening causes a permanent increase in the net foreign asset position of
136 a country, and consequently, an appreciation of its equilibrium exchange rate in the long term. This will occur
137 provided that the fiscal consolidation is considered to have a long-run effect. This study shows how much of the
138 decline of the euro against the US dollar during the 1995-2001 period can be attributed to relative changes in
139 productivity in the United States and the euro area.

140 While the estimation covers the period 1985-2007, the following analysis concentrates on two distinct periods.
141 Period 1 (1995-2001) covers the US dollar appreciation against the euro.

142 Moreover, it encompasses the period during which the productivity revival in the United States has taken
143 place. Over this period, the dollar appreciated by almost 41% against the euro area currency. During the first
144 three years (1998-2001) of the euro, it depreciated by almost 30% against the US dollar. Figure ?? shows the
145 impact of a change in relative productivity developments over these periods on the equilibrium real exchange
146 rate. The contribution of the relative developments in productivity on the explanation of the depreciation of the
147 euro against the US dollar since 1995 is significant. However, these developments are far from explaining the
148 entire euro decline. Figures 6 and 7 show the impact of a change in relative US GDP and Euro GDP on the
149 equilibrium dollar/euro real exchange rate.

150 Period 2 (2001-2007) covers the US dollar depreciation against the euro. Figure 8 also shows the impact of
151 a change in relative productivity developments over these periods on the equilibrium real exchange rate. The
152 impact of productivity on the real exchange rate is significant. The contributions of the oil prices, US GDP, M2
153 and US government spending on the explanation of the volatility of the euro against the US dollar since 1995 are
154 also shown in Figures 9-12. Estimation and The Structural Vecm ??utkepohl (2004) suggests the following basic
155 vector autoregressive and error correction model (neglecting deterministic terms and exogenous variables):

156 For a set of K times series variables (4)

157 The VAR model is general enough to accommodate variables with stochastic trends, it is not the most suitable
158 type of model if interest centers on the cointegration relations because they do not appear explicitly.

159 The following VECM form is a more convenient model setup for cointegration analysis:

160 (5) a) Deterministic Terms Several extensions of the basic model are usually necessary to represent the main
161 characteristics of a data set. It is clear that including deterministic terms, such as an intercept, a linear trend term,
162 or seasonal dummy variables, may be required for a proper representation of the data gathering process. One
163 way to include deterministic terms is simple to add them to the stochastic part, (6) Here β_t is the deterministic
164 part and x_t is a stochastic process that may have a VAR or VECM representation.

165 A VAR representation for y_t is as follows:

5 F) IMPULSE RESPONSES ANALYSIS OF NONSTATIONARY VAR'S AND VECM'S

168 A VECM (p-1) representation has the formy $t = ?_0 + ?_1 t + y_{t-1} D?" I \hat{I}?" y_{t-1} + \dots D?" p-1 \hat{I}?" t-p+1$
169 + ? t(8)

170 b) Exogenous Variables Lutkepohl (2004) recommends further generalizations of the model to include further
171 stochastic variables in addition to the deterministic part. A rather general VECM form that includes all these
172 terms is $y_t = y_{t-1} + D?" I \hat{I}?" y_{t-1} + \dots D?" p-1 \hat{I}?" t-p+1 + CD_t z_t + ?_t$ (9) where the z_t are
173 unmodeled stochastic variables, D_t contains all regressors associated with deterministic terms, and C and $?_t$ are
174 parameter matrices. The z_t 's are considered unmodeled because there are no explanatory equations for them in
175 the system. c) Estimation of VECM's Under Gaussian assumptions estimators are ML estimators conditioned
176 on the presample values (Johansen 1988). They are consistent and jointly asymptotically normal under general
177 assumptions, (10) Reinsel (1993) gives the following: $V = T \text{ VEC}([D?" t \dots D?" p-1] - [D?" t \dots D?" p-1])$?
178 d $N(0, ?_t) \text{ VEC} (?_{k-r}) = N(\text{VEC} (?_{k-r}), \{y_{t-1} \dots y_{t-p}\} -1 \{?_{t-1} \dots ?_{t-p}\} -1)$ (11)

179 Adding a simple two-step (S2S) estimator for the cointegration matrix $y_t - y_{t-1} - D?" x_{t-1} = 2 y_{t-1} 2 + ?$
180 t(12)

181 The restricted estimator $?_{k-r} R$ obtained from $\text{VEC} (?_{k-r} R) = ?_{k-r} + h$, a restricted estimator of
182 the cointegration matrix is The first stage estimator $?_t^*$ is treated as fixed in a second-stage estimation of
183 the structural form because the estimators of the cointegrating parameters converge at a faster rate than the
184 estimation of the short-term parameters (Lutkepohl-2004). $?_t R = [I_r : ?_{k-r}]$ -1(13)

185 In other words, a systems estimation procedure may be applied to $(??" A \hat{I}?" y_t = ?_t^* ?_t^* y_{t-1} + D?" I \hat{I}?"$
186 $y_{t-1} + \dots D?" p-1 \hat{I}?" y_{t-p+1} + C^* D_t + B^* z_t + v_t$

187 As suggested by King et al (1991) the following procedure is used for the estimation of the model: Using
188 economic theory we can infer that all three variables should be $I(1)$ with $r = 2$ cointegration relations and only
189 one permanent shock. The variables in this model include government spending, US productivity and oil prices.
190 Because $k^* = 1$, the permanent shock is identified without further assumptions ($k^* - 1$) / 2 = 0). For identification
191 of the transitory shocks a further restriction is needed. If we assume that the second transitory shock does
192 not have an instantaneous impact of the first one, we can place the permanent shock in the e_t vector. These
193 restrictions can be represented as follows in this framework: $B = [*00] B [***] [*00] [*00] [*00] [***]$

194 Asterisks denote unrestricted elements. Because B has rank 1, the new zero columns represent two
195 independent restrictions only. A third Year restriction is placed on B , and thus we have a total of $K(K-1)/2$
196 independent restrictions as required for justidentification.

197 The Breusch-Godfrey test for autocorrelation (Godfrey 1988) for the h th order residual autocorrelation
198 assumes this model. $V_t : B_t t-1 + \dots + B_h t-h + \text{error}_t$ (15)

199 For the purpose of this model the VECM form is as follows: $t = ??" y_{t-1} + D?" I \hat{I}?" y_{t-1} + \dots + D?" p-1$
200 $\hat{I}?" y_{t-p+1} + CD_t + B_t t-1 + \dots + B_h t-h + ?_t$ (16)

201 e) Impulse Response Analysis-Stationary VAR Processes Following Lutkepohl (2004), if the process y_t is
202 $I(0)$, the effects of shocks in the variables of a given system are most easily seen in its Wold moving average (MA)
203 representation as follows: $y_t = ?_0 ?_t + ?_1 ?_{t-1} + ?_2 ?_{t-2} + \dots$ (17)

204 where $?_s = ?_s ?_s ?_s$ $A_j S = 1, 2, \dots$

205 The coefficients of this representation may be interpreted as reflecting the responses to impulses hitting the
206 system. The effect on an impulse is transitory as it vanishes over time. These impulse responses are sometimes
207 called forecast error impulse responses because the $?_s ?_s$ are the 1-step ahead forecast errors. Occasionally,
208 interest centers on the accumulated effects of the impulses. They are easily obtained over all periods. The total
209 long-run effects are given by: $?_s = ?_s ?_s = (I - A_1 - A_2 - \dots - A_p)^{-1}$ (18)

210 This matrix exists if the VAR process is stable. Lutkepohl (2004) criticizes the forecast error impulse response
211 method in that the underlying shocks are not likely to occur in isolation if the components of $?_s$ are instantaneously
212 correlated. Therefore, orthogonal innovations are preferred in an impulse response analysis. One way to get them
213 is to use a Choleski decomposition of the covariance matrix $?_s ?_s$. If B is a lower triangular matrix such that $?_s ?_s$
214 = B^{-1} , we obtain the following: $y_t = ?_0 ?_t + ?_1 ?_{t-1} + \dots$ (19)

215 Sims (1981) recommends trying various triangular orthogonalizations and checking the robustness of the results
216 with respect to the ordering of the variables if no particular ordering is suggested by subject matter theory.

217 5 f) Impulse responses analysis of nonstationary VAR's and 218 VECM's

219 Although the Wold representation does not exist for nonstationary cointegrated processes, it is easy to see that
220 the $?_s$ impulse response matrices can be computed in the same way based on VAR's with integrated variables or
221 the levels version of a VECM as proposed by Lutkepohl (1991) and Lutkepohl & Reimers (1992). In this case,
222 the $?_s$ may not converge to zero as $S \rightarrow \infty$; consequently, some shocks may have permanent effects. Of course,
223 one may also consider orthogonalized or accumulated responses. However, from Johansen's (1998a) version of
224 Granger's Representation Theorem it is known that if y is generated by a reduced form VECM $\hat{I}?" y_t = ??" y_t$
225 + $D?" I \hat{I}?" y_{t-1} + \dots D?" p-1 \hat{I}?" y_{t-p+1} + ?_t$ (20) it has the following MA representation $y_t = ??" i +$
226 $?_s ?_s ?_s ?_s ?_s$ $t + y^* 0$ (21)

227 VI.

228 6 Tests for Nonnormality

229 Given the residuals \hat{u}_t ($t = 1, \dots, T$) of an estimated VECM process, the residual covariance matrix is therefore
230 estimated as $\hat{\Sigma} = \hat{u}_t \hat{u}_t'$ (22)

231 and the square matrix $\hat{\Sigma}^{1/2}$ is computed. The standardization of the residuals used here was proposed by
232 Doornik & Hansen (1994) and Lutkepohl (1991). An alternative way of standardization is based on a Choleski
233 decomposition of the residual covariance matrix.

234 Refer to the appendix (

235 7 a) Forecasting VECM Processes

236 Once an adequate model for the data gathering process of a system of variables has been constructed, it may be
237 used for forecasting as well as economic analysis. The concept of Granger-causality, which is based on forecast
238 performance, has received considerable attention in the theoretical and empirical literature. Granger (1969)
239 introduced a causality concept whereby he defines a variable y_{2t} to be causal for a time series variable y_{1t} if the
240 former helps to improve the forecasts of the latter.

241 In Table 5 the test for Granger-Causality reveals none of the p-values are smaller than 0.05. Therefore,
242 using a 5% significance level, the null hypothesis of noncausality cannot be rejected. However, in the test for
243 instantaneous causality there is weak evidence of a Granger-causality relation from US productivity differentials
244 ? dollar/euro exchange rate because the p-value of the related test is at least less than 10%.

245 Table 5 This procedure can be used if the cointegration properties of the system are unknown. If it is known
246 that all variables are at most $I(1)$, an extra lag may simply be added and the test may be performed on the
247 lag-augmented model. Park & Phillips (1989) and ??ims et al (1990) argue that the procedure remains valid if an
248 intercept or other deterministic terms are included in the VAR model. Forecasting vector processes is completely
249 analogous to forecasting univariate processes. It is assumed the parameters are known.

250 The identification of shocks using restrictions on their long-run effects are popular. In many cases, economic
251 theory suggests that the effects of some shocks are zero in the long-run. Therefore, the shocks have transitory
252 effects with respect to some variables. Such assumptions give rise to nonlinear restrictions on the parameters
253 which may in turn be used to identify the structure of the system.

254 The impulse responses obtained from a structured VECM usually are highly nonlinear functions of the model
255 parameters. This should be considered when drawing inferences related to the impulse responses.

256 8 b) Estimation of Structural Parameters

257 Following the procedure recommended by ??utkepohl (2004), the estimation of the SVAR model is equivalent to
258 the problem of estimating a simultaneous equation model with covariance restrictions. First, consider a model
259 without restrictions on the long-run effects of the shocks. It is assumed that \hat{u}_t is white noise with $\hat{u}_t \sim N(0, 1)$
260 k) and the basic model is a VAR; thus the structural form is $A y_t = A[A_1 \dots, A_p] Y_{t-1} + B \hat{u}_t$ (23)

261 The concentrated log-likelihood is as follows: $c(A, B) = \text{constant} + T/2 \log[A] - T/2 \log[B] - T/2 m (A'B' - 1 A? ?)$ (24)

262 where $A? ? = T - 1$

263 $(Y - A \sim Z)(Y - A Z Y)$ is just the estimated covariance matrix of the VAR residuals as argued by Breitung (2001).
264 ??utkepohl (2004) recommends that continuation of the algorithm stops when some prespecified criterion are
265 met. An example would be a relative change in the log-likelihood and the relative change of the parameters..
266 The resulting ML estimator is asymptotically efficient and normally distributed, where the asymptotic covariance
267 matrix is estimated by the inverse of the information matrix. Moreover, the ML estimator for A is $A \sim -1 B \sim A \sim -1$ (25)

268 Where $A \sim$ and $B \sim$ are estimators of A and B , respectively. Note that A only corresponds to the In the
269 presence of over-identifying restrictions, an LR test statistic for these restrictions can be constructed in the usual
270 way as $LR = T(\log l? ? - \log l? ?)$ (26)

271 For VECM'S the concentrated likelihood functionl $c(A, B) = \text{constant} + T/2 \log[A] - T/2 \log[B] - T/2 m$
272 $(A'B' - 1 A? ?)$ (27)

273 * can be used for estimating the structural parameters A and B . If no restrictions are imposed on the short-run
274 parameters, the $\hat{\Sigma}$ matrix represents the residual covariance matrix obtained from a reduced rank regression.
275 If the short-run parameters are restricted or restrictions are placed on the cointegration vectors, some other
276 estimator may be used instead of the ML estimator, and $\hat{\Sigma}$ may be estimated from the corresponding residuals.

277 Generally, if long-run identifying restrictions have to be considered, maximization of the above formula is a
278 numerically difficult task because these restrictions are typically highly nonlinear for A , B , or both. In some
279 cases, however, it is possible to express these long-run restrictions as linear restrictions, and maximization can
280 be done using the scoring algorithm defined above. When considering a cointegrated VECM where $A = 1 k$,
281 it follows that the restrictions on the system variables can then be written in implicit form as Replacing \hat{u}_t by
282 an estimator obtained from the reduced form we obtain $R B, l = R? (1 k ? ?)$, which is a stochastic restriction
283 matrix. These implicit restrictions can be derived. Here $t y/2$ and $t 1-y/2$ are the $y/2$ and $(1-y/2)$ equations,
284 respectively, of the empirical distribution of $(? - ?)$ c) Impulse Responses The responses are significant at the
285 95% level. Table ?? (in the appendix) displays the point estimates of the impulse responses of the real exchange
286 287

288 rate to the one-standard deviation US productivity shocks. Also note that the results are relatively robust with
289 the individual impulse responses falling within the 5% significant tests. Figure 13 shows that for the exchange
290 rate these shocks have a highly significant impact over the 10-year time period and the correlation between these
291 impulse responses is high. They show that productivity shocks have a very significant long-run impact on the
292 dollar/euro exchange rate. The results follow those of ??larida and Galf (1992). The point estimates in table
293 ?? show that for each percentage point in the US-Euro area productivity differential there is a three percentage
294 point real change in the dollar/euro valuation. This suggests that fundamental real factors are significant in the
295 long-run fluctuations in real exchange rates.

296 Refer to the appendix (figures 31-44) for the US and Euro productivity differentials. Figure 31 shows the
297 long-run impact of productivity shocks on the dollar/euro real exchange rate. Figure 35

298 9 d) Forecast error variance decomposition

299 Forecast error variance decomposition is a way of summarizing impulse responses. Following ??utkepohl (2004)
300 the forecast error variance decomposition is based on the orthogonalized impulse responses for which the order
301 of the variables matters. Although the instantaneous residual correlation is small in our subset VECM, it will
302 have some impact on the outcome of a forecast error variance decomposition. ??utkepohl (2004) suggests the
303 forecast error variance as? 2 k (h) = ?(2 kl,n + ?+ ? 2 k,n) = ? 2 kjo + ?? 2 kh-1)(30)

304 The term (2 kl,n + ?+ ? 2 k,n) is interpreted as the contribution of variable j to the h-step forecast error
305 variance of variables k. This interpretation makes sense if the ? ? s can be viewed as shocks in variable i.
306 Dividing the preceding by ? 2 k (h) gives the percentage contribution of variable j to the h-step forecast error of
307 variable h.(t) (h) = ? 2 kjo + ?? 2 kh-1 / ? 2 k (h)(31)

308 Chart 1 shows the proportion of forecast error in the dollar/euro accounted for by US productivity, government
309 spending, M2, oil prices and US GDP. The US productivity accounts for 28% over the 20 year time interval with
310 a sharp rise of 21% during the first 5 years. This shows that productivity shocks have a very significant short-run
311 impact on the dollar/euro exchange rate while the long-run impact is more transitory in nature.

312 10 Discussion of The Results

313 This paper provides evidence on the long-run relationship between the real dollar/euro exchange rate and
314 productivity measures, controlling for the real price of oil, relative government spending and M2. However,
315 the results imply that the productivity measure can explain only about 27% of the actual amount of depreciation
316 of the euro against the US dollar for the period 1995-2001. This outcome is confirmed by a specification in this
317 study. Figure 18 shows that the productivity can explain only about 28% of the appreciation of the euro during
318 the period 1995-2007 (appendix table 6 for point estimate).

319 Evidently, productivity is not the only variable affecting the real exchange rate in the model specified. The
320 other variables identified also affected the dollar/euro exchange rate. In particular, the surge in oil prices since
321 early 1999 seems to have contributed to the weakening of the euro. The magnitude of the long-run impact of
322 changes in the real price of oil on the dollar/euro exchange rate is certainly significant. Between 1997 and 2001,
323 the model indicates on the average that the equilibrium euro depreciation related to oil prices developments could
324 have been around 20% (refer to table 8 for point estimate and figure 21). These results are based on long-term
325 relationships.

326 Overall, the model is surrounded by significant uncertainty, reflecting the inherent difficulty of modeling
327 exchange rate behavior. While we find that in 1995-2001 the euro traded well below the central estimates derived
328 from these specifications, this uncertainty precludes any quantification of the precise amount of over or under
329 valuation at any point in time. This point is also made clear by ??etken and Dieppo (2002), who employed a
330 wide range of modeling strategies to show that the deviation from the estimated equilibrium differs widely across
331 models and is surrounded by some uncertainty. Moreover, the results provided by Maeso-Fernandez and Osbat
332 (2001) find various reasonable but nonencompassing specifications leading to different exchange rate equilibria.
333 Again, this suggests a very cautious interpretation of the magnitude of over/under valuation.

334 11 Year

335 12 Cusum Tests

336 The standardization of the residuals used in this model was proposed by Doornik & Hansen (1994) and Lutkepohl
337 (1991). An alternative way of standardization is based on a Choleski decomposition of the residual covariance
338 matrix. ??utkepohl (2004) recommends checking the time invariance of a model by considering recursively
339 estimated quantities. Plotting the recursive estimates together with their standard or confidence intervals can
340 give useful information on possible structural breaks. The recursive estimates of the model are shown in Figures
341 27-30. They appear to be somewhat erratic at the sample beginning which would reflect greater uncertainty.
342 However, even when taking this into account one finds that the recursive estimates do not indicate parameter
343 uncertainty. The erratic behavior of the recursive estimates at the beginning could be attributed to the change
344 over to the euro in 2001.

345 The results of the CUSUM tests of the system with 99% level critical bounds (for sample periods 1985-2007)
346 also indicate that government spending, GDP, US productivity, oil prices and M2 recursive estimates are all
347 outside the critical bounds for the CUSUM statistics. This would suggest some stability problems even though
348 they are only outside the critical bounds for the years of 2005-2008. They are all well within the uncritical region
349 for the years up to 2005. For VECMs with cointegrating variables, Hansen & Johansen (1999) have recommended
350 recursive statistics for stability analysis. Figure 35

351 Figure 29

352 the tau statistic $T(\tau, r)$ is plotted in Figure 36 and the results indicate that the eigenvalue is stable. Therefore,
353 there is no indication of instability of the system appears to be within the 95% confidence intervals. Also,

354 Figure 30

Figure 1: Figure 1 : 2012 earFigure 2 :

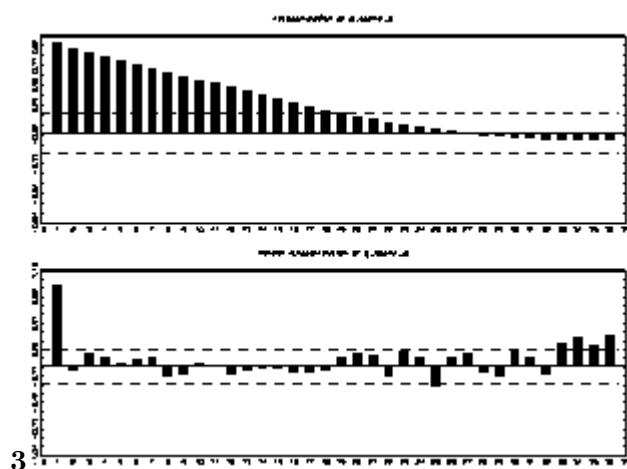


Figure 2: Figure 3 :

355 1

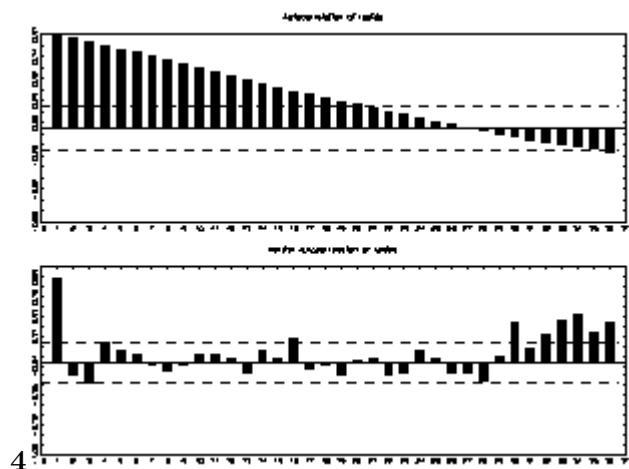


Figure 3: Figure 4 :

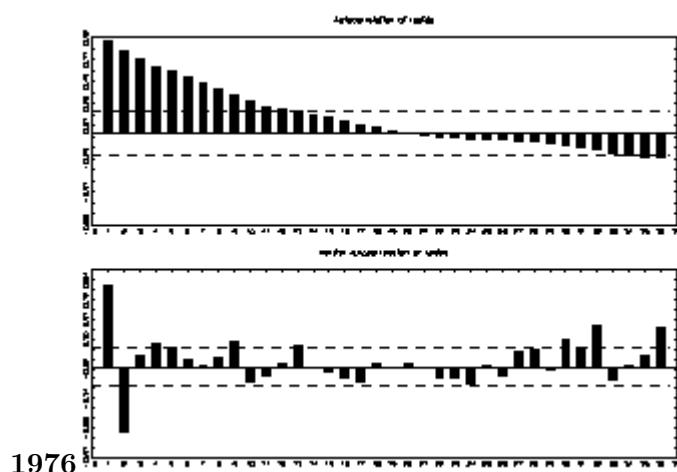


Figure 4: Fuller (1976

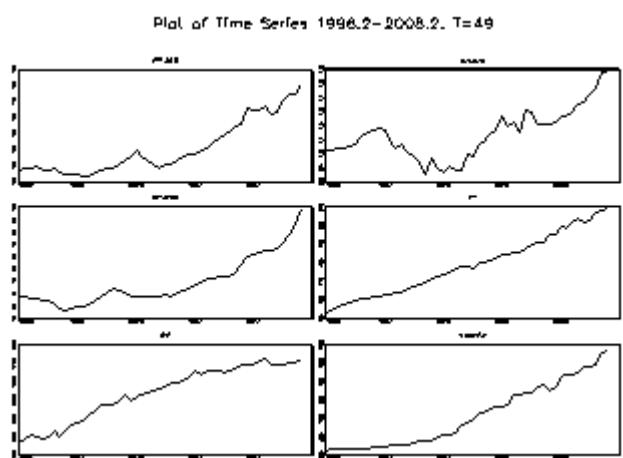


Figure 5:

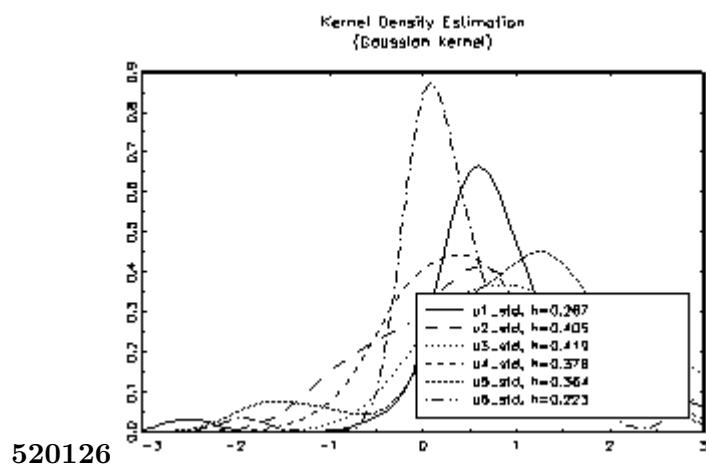


Figure 6: Figure 5 : 2012 ear

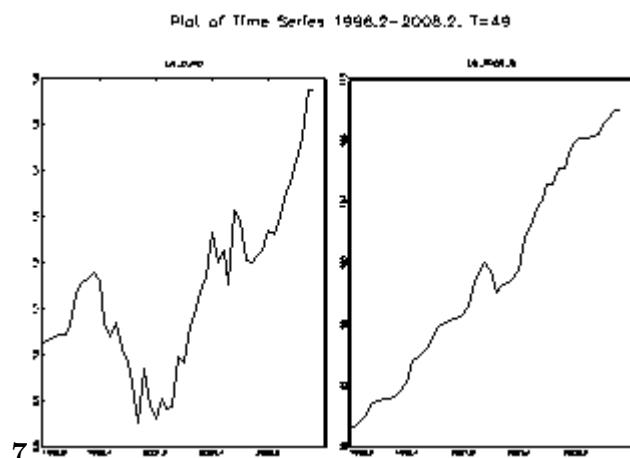


Figure 7: Figure 7 :

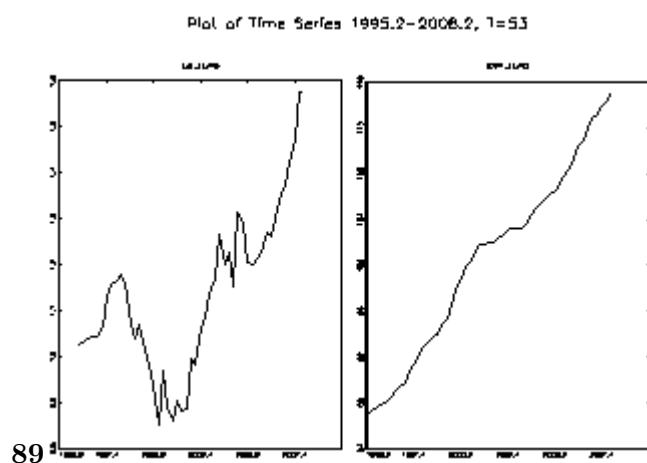


Figure 8: Figure 8 :Figure 9 :

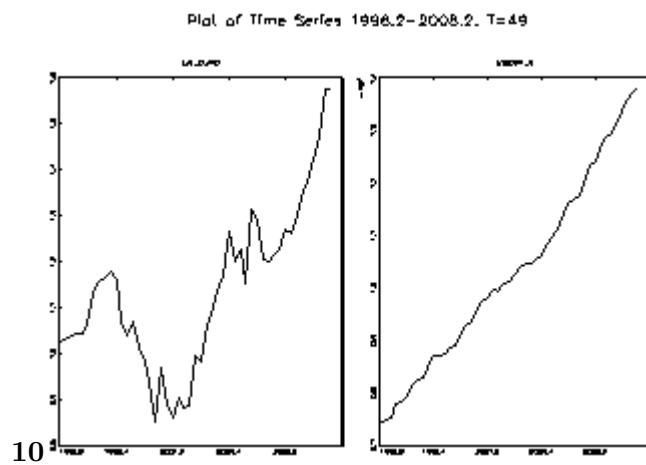


Figure 9: Figure 10 :

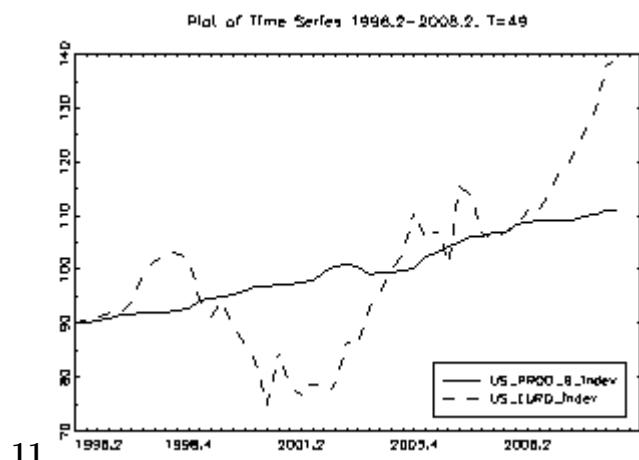


Figure 10: Figure 11 :

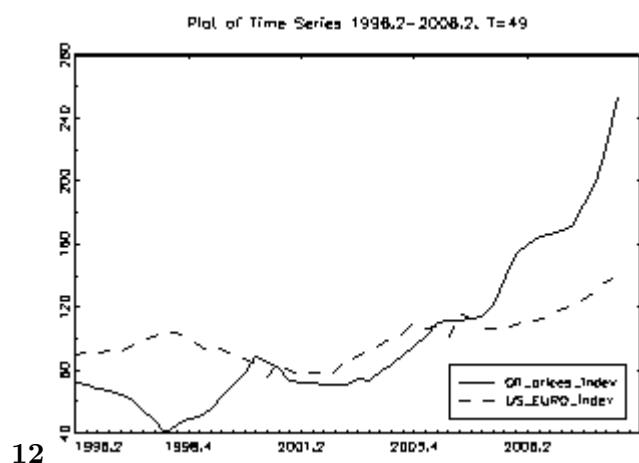


Figure 11: Figure 12 :

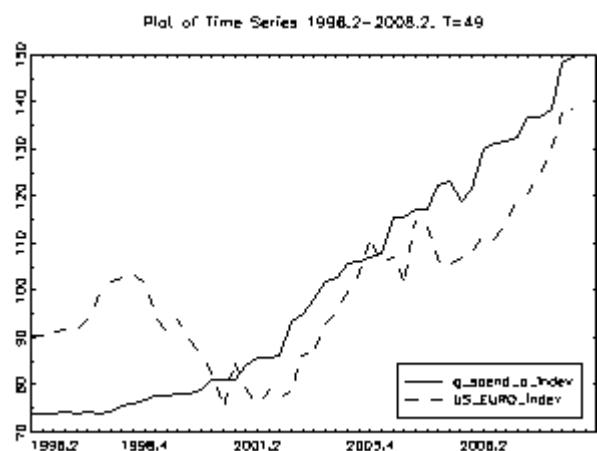


Figure 12:

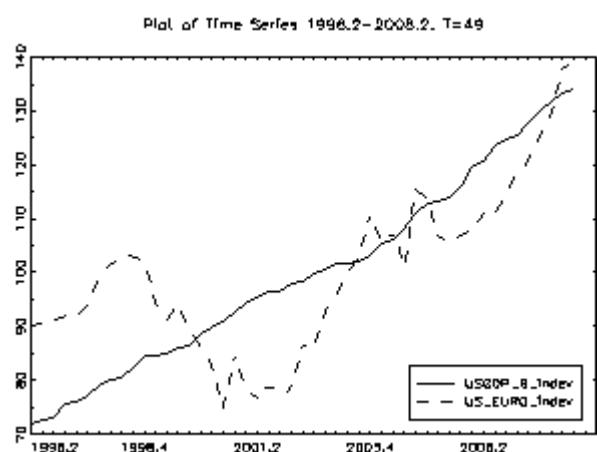
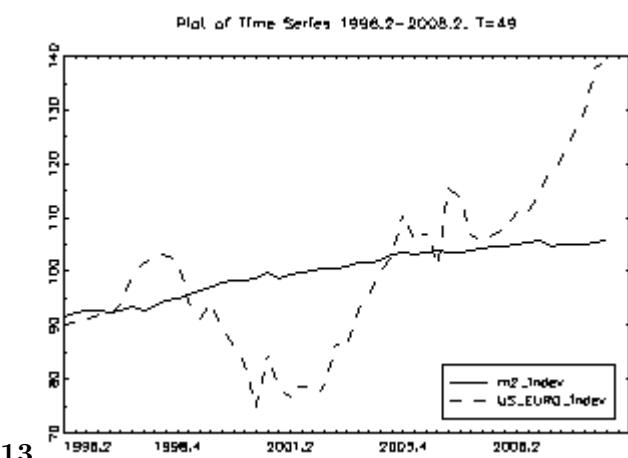



Figure 13: Global

13

Figure 14: Figures 13 -

12 CUSUM TESTS

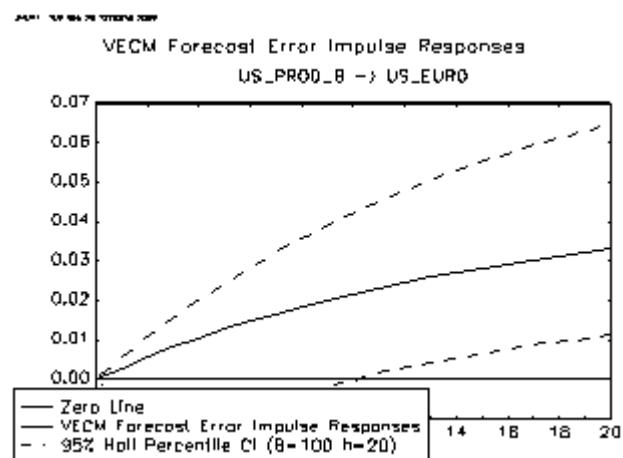


Figure 15:

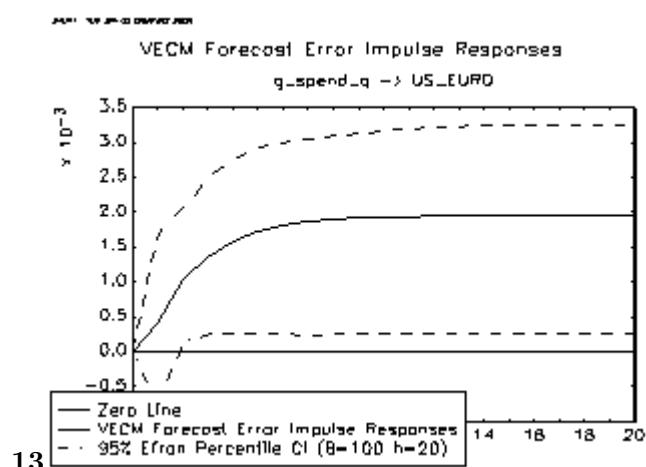


Figure 16: Figure 13 :

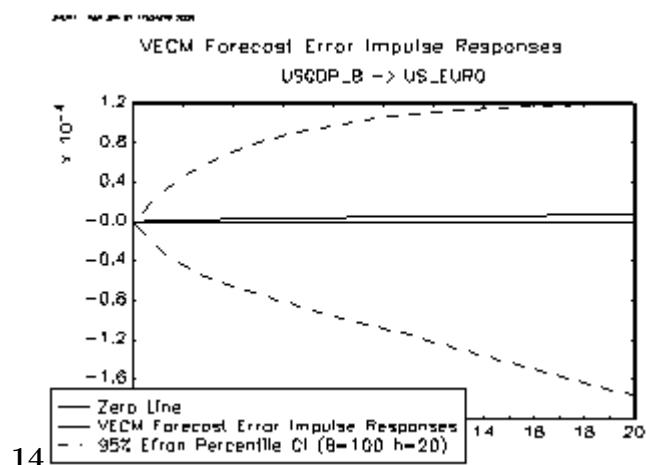


Figure 17: Figure 14 :

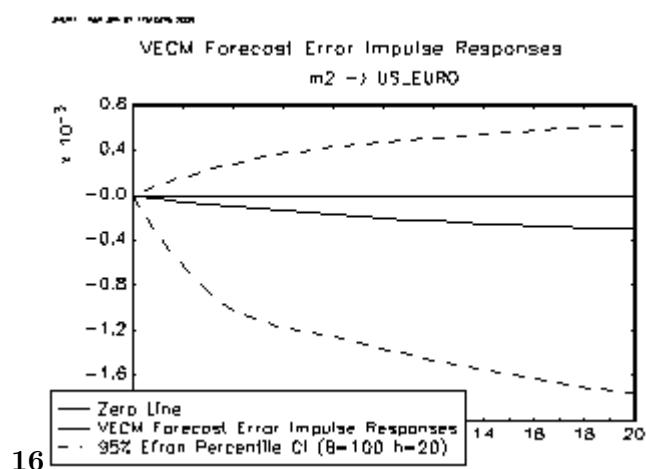


Figure 18: Figure 16 :

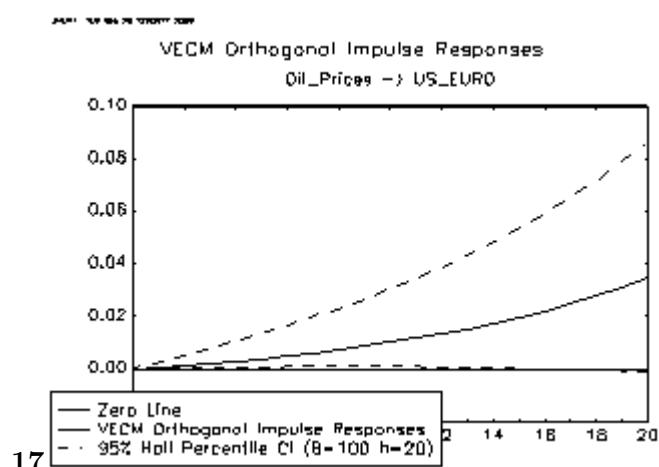


Figure 19: Figure 17 :

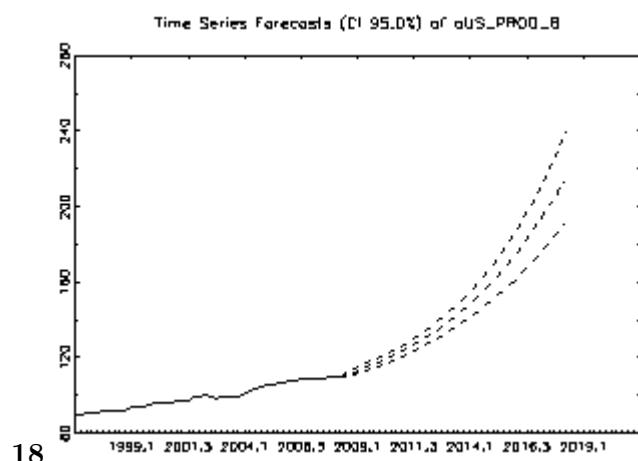


Figure 20: Figure 18 :

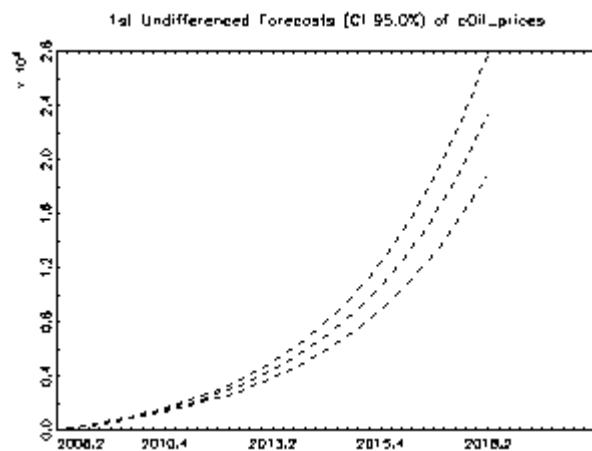
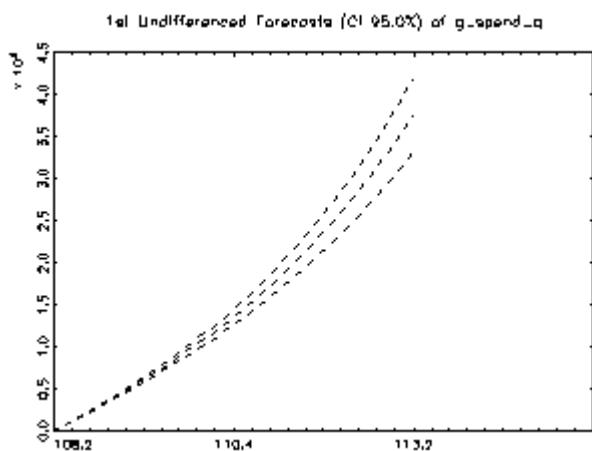
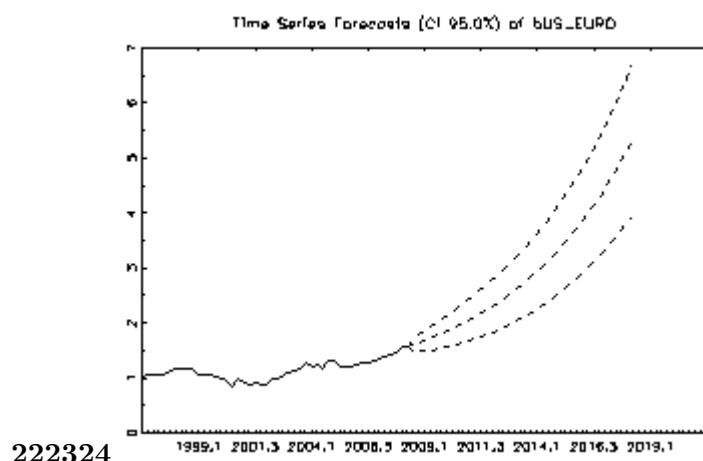




Figure 21:

21

Figure 22: Figure 21 :

222324

Figure 23: Figure 22 Figure 23 Figure 24

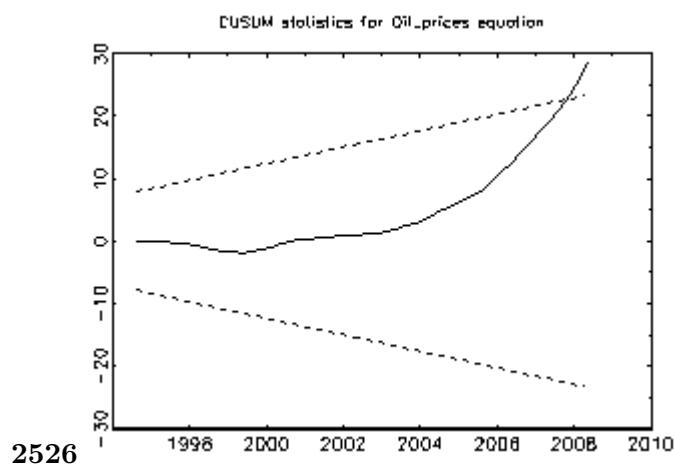


Figure 24: Figure 25 Figure 26 Global

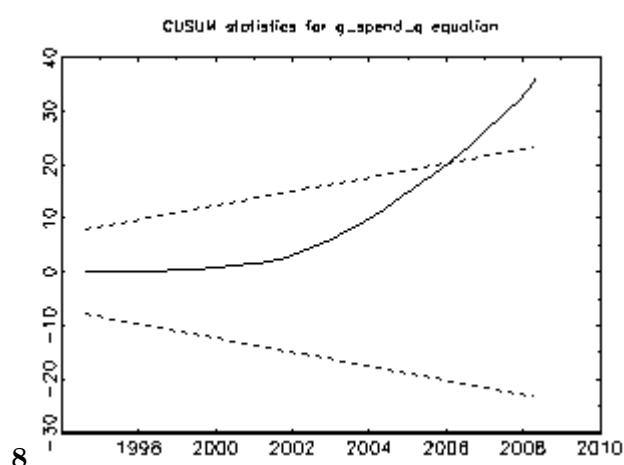


Figure 25: 8 *

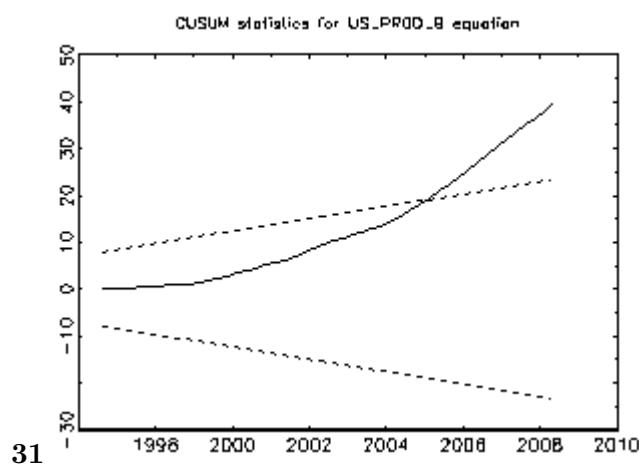


Figure 26: Figure 31 :

32

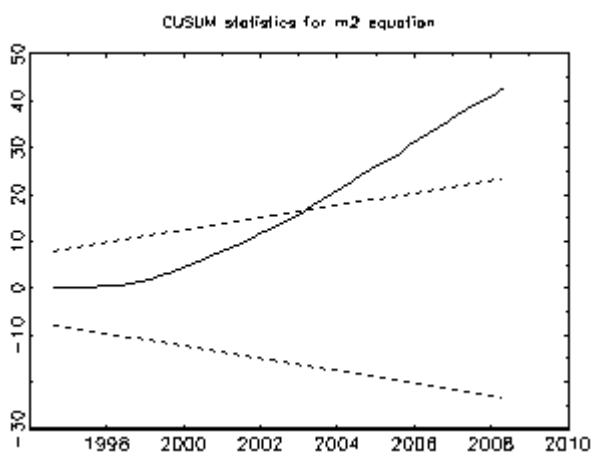


Figure 27: Figure 32 :

33

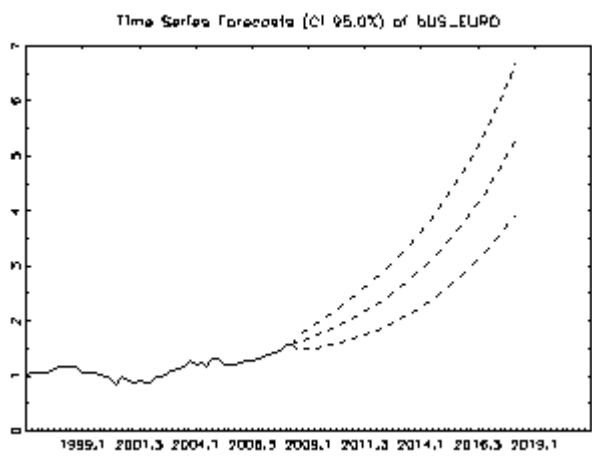


Figure 28: Figure 33 :

3537

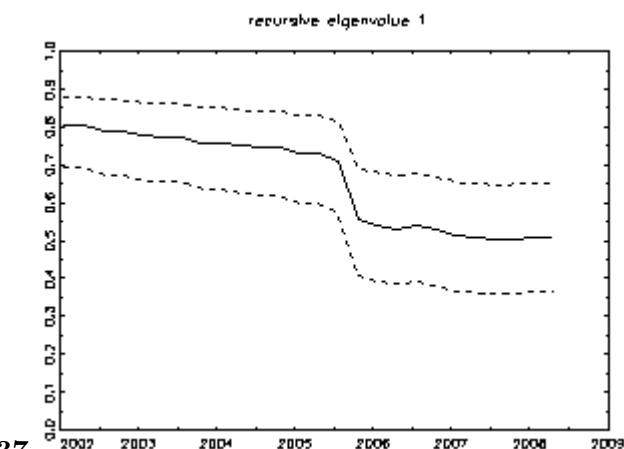


Figure 29: Figure 35 :YearFigure 37 :

36

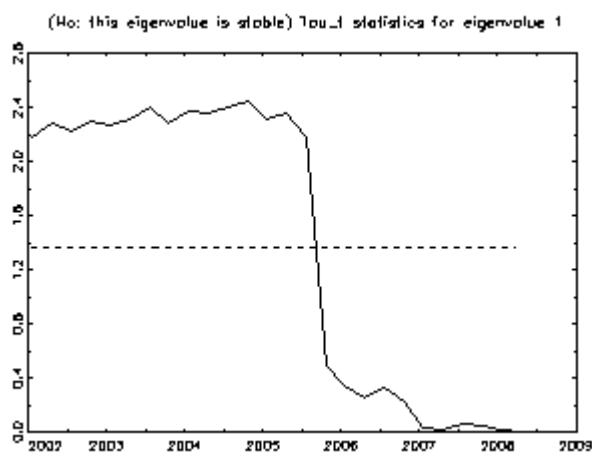


Figure 30: Figure 36 :

38

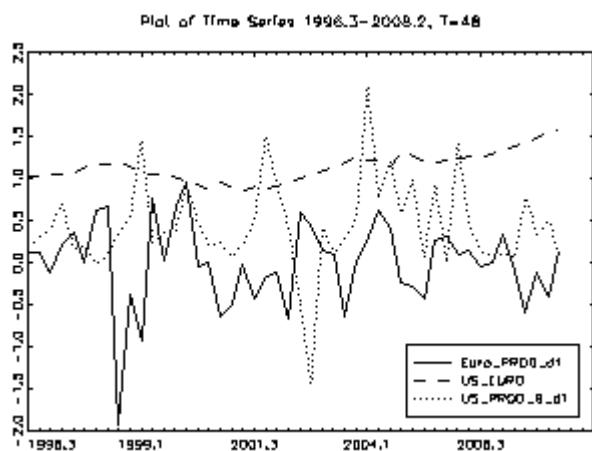


Figure 31: Figure 38 :

40

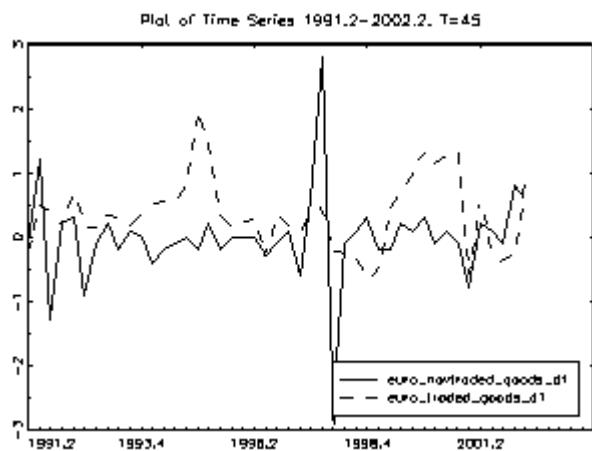


Figure 32: Figure 40 :

41

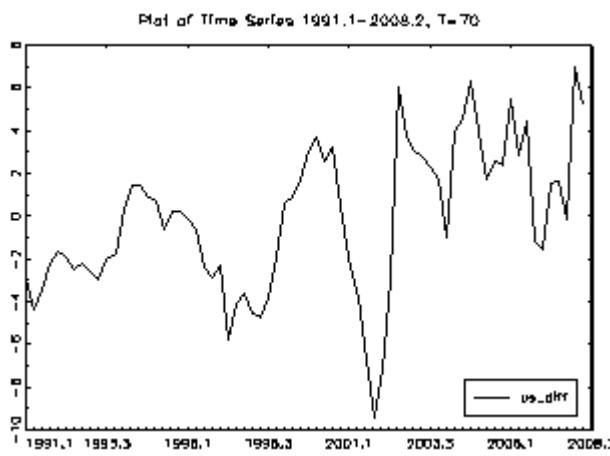


Figure 33: Figure 41 :

39

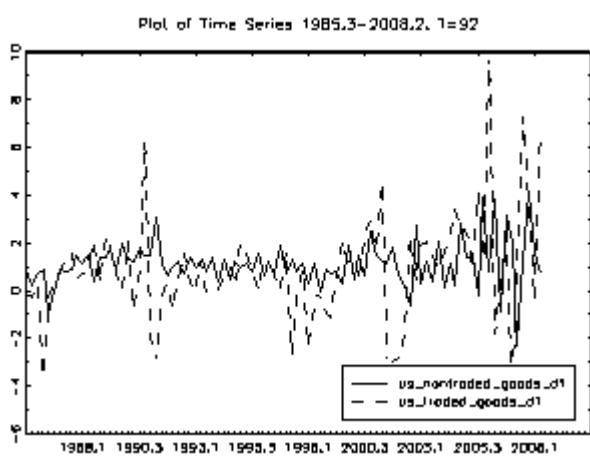


Figure 34: Figure 39 :

43

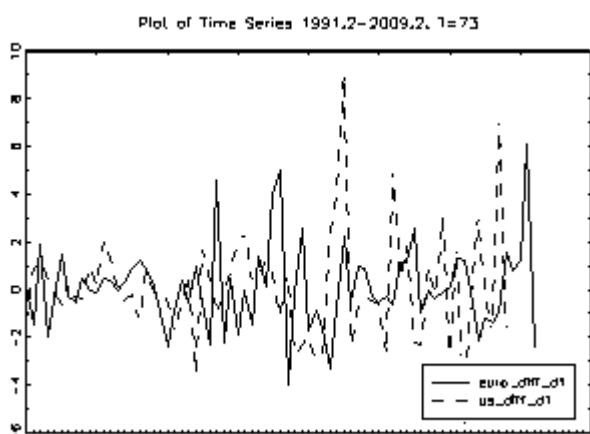


Figure 35: Figure 43 :

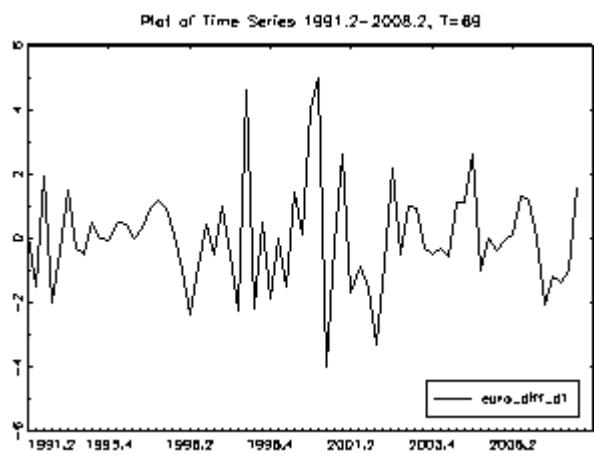


Figure 36: Figure 44 :

Figure 37: Table

12 CUSUM TESTS

2

	Period	Specification	Ratio	Critical
			Ratios	
Without Oil				& Test
				Re-
				sults
US Prod	1985- 2008	2 lags	3.72	16.22***
Euro Prod	1985- 2008	2 lags	2.7	12.45**
US GDP	1985- 2008	2 lags	2.23	12.53**
Euro GDP	1985- 2008	2 lags	3.32	9.14**
US CPI	1985- 2008	2 lags	10.59	12.45**
Euro CPI	1985- 2008	2 lags	2.48	12.45**

Table 3

Cointegration

	Period	Specification	Ratio	Critical
			Ratios	
With Oil				& Test
				Re-
				sults
US Prod	1985- 2008	2 lags	15.34	25.73**
Euro Prod	1985- 2008	2 lags	31.68	42.77**
US GDP	1985- 2008	2 lags	13.61	16.22***

[Note:

significance at the 99%, 95% and 90% levels are noted by ***, ** and * respectively. The S and L critical values are taken from tables computed by Saikkonen and Lutkepohl.]

Figure 38: Table 2

[Note: $y_t = \beta_0 + \beta_1 t + \beta_2 x_t + \beta_3 y_{t-1} + \dots + \beta_p y_{t-p} + \epsilon_t$ d) Estimation of Models with more General Restrictions and Structural Forms.]

Figure 39:

6

) for tests for

Figure 40: table 6

5

** Sun, 2 Aug 2009 06:51:29 ***

VAR Orthogonal Impulse Responses
Selected Confidence Interval (CI):

a) 95% Hall Percentile CI (B=100 h=20)
Selected Impulse

Responses: "impulse variable -> response
variable"

time Oil_prices
->US_EURO

point estimate 0.0000
CI a) [0.0000, 0.0000]

1 point estimate -
CI a) 0.0354
[-0.0653, -0.0469]

2 point estimate -
CI a) 0.0174
[-0.0401, -0.0183]

3 point estimate -
CI a) 0.0111
[-0.0322, -0.0085]

4 point estimate -
CI a) 0.0027
[-0.0187, 0.0035]

5 point estimate 0.0017
CI a) [-0.0113, 0.0109]

6 point estimate 0.0086
CI a) [0.0030, 0.0251]

7 point estimate ²¹ 0.0054
CI a) [-0.0036, 0.0243]

356 [DNB Staff Reports] , *DNB Staff Reports* De NederlandscheBank. 22.

357 [Harrod ()] , Roy Harrod . *International Economics* 1933. James Nisbet and Cambridge University Press.

358 [Jarque and Bera ()] 'A Test for Normality of Observations and Regression Residuals'. C Jarque , A K Bera .
359 *International Statistical Review* 1987. 55 p. .

360 [Engel ()] 'Accounting for US Real Exchange Rate Changes'. E Engel . *Journal of Political Economy* 1999. 107
361 (3) .

362 [Detkin et al. ()] *An Omnibus Test for Univariate and Multivariate Normality*, C A Detkin , J Dieppe , L Oxland
363 ; Doornik , J Hansen , H . 1994. Nuffield College, Oxford. Oxford. p. . (Working Paper) (Practical Issues in
364 Cointegration Analysis, 15)

365 [Lutkepohl] *Applied Time Series Econometrics*, Helmut Lutkepohl .

366 [Frenkel and Mussa ()] 'Asset Markets, Exchange Rates and the Balance of Payments'. J Frenkel , M Mussa .
367 *Handbook of International Economics*, R Jones, P Kenen (ed.) (2 North-Holland) 1995.

368 [Chow and Lin ()] 'Best Linear Unbiased Interpolation, Distribution and Extrapolation of a Time Series by
369 Related Series'. G C Chow , A Lin . *Review of Economics and Statistics* 1971. 54 p. .

370 [Bailey and Wells ()] 'Capital Flows and Exchange Rates'. A S Bailey , S Wells . *Bank of England Quarterly Bulletin*
371 2001. p. .

372 [Maeso-Fernandez et al. ()] 'Determinants of the Euro Real Effective Exchange Rate: A. Beer/Peer approach'.
373 F C Maeso-Fernandez , B Osbat , Schnatz . *ECB Working Paper*, 2001. p. 85.

374 [Lutkepohl and Reimers ()] 'Impulse Response Analysis of Cointegrated Systems'. R Lutkepohl , H E Reimers .
375 *Journal of Economic Dynamics and Control* 1992. 2004. Cambridge University Press. 16 p. .

376 [De Gregorio et al. ()] 'International Evidence on Tradables and Nontradables Inflation'. J A De Gregorio , H
377 Giovannini , Wolf . *European Economic Review* 1994. 38 p. .

378 [Lutkepohl ()] *Introduction to Multiple Time Series*, Helmut Lutkepohl . 1991. Berlin: Springer-Verlag.

379 [Fuller ()] *Introduction to Statistical Time Series*, Wayne A Fuller . 1976. New York: Wiley.

380 [Granger ()] 'Investigating Casual Relations by Econometric models and Cross-Spectral Methods'. C E J Granger
381 . *Econometrica* 1969. 37 p. .

382 [Johansen et al. ()] 'Likelihood-based Inference in Cointegrated Vector Auto -Regressive Models, 26'. S Johansen
383 , R G King , C I Plosser , M W Watson . *American Economic Review* 1995. 1991. 81 p. . (Stochastic Trends
384 and Economic Fluctuations)

385 [Sims ()] 'Macroeconomics and Reality'. C A Sims . *Econometrica* 1980. 48 p. .

386 [Godfrey ()] *Misspecification Tests in Econometrics*, L Godfrey . 1988. Cambridge: Cambridge University Press.

387 [Amano and Van Norden ()] 'Oil Prices and the Rise and Fall of the US Real Exchange Rate'. R A Amano , Van
388 Norden . *Journal of International Money and Finance* 1998b. 17 p. .

389 [Vlaar ()] *On The Asymptotic Distribution of Impulse Response Functions With Long-run*, P Vlaar . 1998.

390 [Candelon and Lutkepohl ()] 'On the Reliability of Chow-type Tests for Parameter Constancy in Multivariate
391 Dynamic Models'. B Candelon , H Lutkepohl . *Economic Letters* 2001. 73 p. .

392 [Park and Phillips ()] J Y Park , P C B Phillips . *Statistical Inference in Regressions With Integrated
393 Processors:Part 2*, 1989. 5 p. .

394 [McGuckin et al. ()] *Performance 2001: Productivity, Employment, and Income in the World's Economics*, R
395 McGuckin , B Van Ark ; Osbat , C Fernandez , M , Schmaltz . 2002. 2001. New York and Brussels.
396 (Determinants of the Euro Real Exchange Rate: a BEER/Peer Approach. Working Paper Series 085,
397 European Central Bank)

398 [Alquist and Chinn] 'Productivity and the Euro-Dollar Exchange Rate Puzzle'. R Alquist , M D Chinn . *NBER
399 Working Paper*, p. 8824.

400 [Jorgenson and Stiroh ()] 'Raising the Speed Limit: US Economic Growth in the Information Age'. D W
401 Jorgenson , K J Stiroh . *Brookings Papers on Economic Activity* 2000. I p. .

402 [Fisher ()] *Real Currency Appreciation in EU Accession Countries: Balassa-[18] Samuelson and Investment
403 Demand*, C Fisher . 2002. (Deutsche Bundesbank Discussion Paper 19.02)

404 [Chinn and Johnson ()] *Real Exchange Rate Levels, Productivity and Demand Shock Evidence from a Panel of
405 14 Countries*, M D Chinn , L Johnson . 1997. p. 66. (IMF Working Paper)

406 [Hansen and Johansen ()] 'Some Tests for Parameter Constancy in Cointegrated VAR Models'. H Hansen , S
407 Johansen . *Econometrics Journal* 1999. 2 p. .

408 [Bergstrand ()] 'Structural Determination of Real Exchange Rates and National Price levels: Some Empirical
409 Evidence'. J H Bergstrand . *American Economic Review* 1991. 81 p. .

12 CUSUM TESTS

410 [Lominski ()] 'Tests for Departure from Normality in the Case of Linear Stochastic Processes'. Z A Lominski .
411 *Metrica* 1961. 4 p. .

412 [Bartless ()] 'Tests of Significance in Factor Analysis'. M S Bartless . *British Journal of Psychology* 1950.

413 [Clostermann and Schnatz ()] 'The Determinants of the Euro-Dollar Exchange Rate Synthetic Fundamentals
414 and a Non-Existing Currency'. J Clostermann , B Schnatz . *Applied Economics Quarterly* 2006. 46 p. .
415 (Konjunkturpolitik)

416 [Stein ()] *The Equilibrium Value of the Euro/\$US Exchange Rate: An Evaluation of Research*, J Stein . 2001.
417 Munich: CESIFO Working Paper. 825.

418 [Balassa ()] 'The Purchasing Power Parity Doctrice: A Reappraisal'. Bela Balassa . *Journal of Political Economy*
419 1964. 72 p. .

420 [Lorenzen and Thygesen ()] *The Relation Between the Euro and the Dollar*, H P Lorenzen , N Thygesen . 2000.
421 Copenhagen. (paper presented at the EPRU Conference)

422 [Clarida and Gali ()] *The Science of Monetary Policy and the New Keynesian Perspective*, R Clarida , J Gali .
423 1992. London. (CEPR Discussion Paper No. 2139)

424 [Samuelson ()] 'Theoretical Notes on Trade Problems'. Paul Samuelson . *Review of Economics and Statistics*
425 1964. 46 p. .

426 [Tille et al. ()] 'To What Extent Does Productivity Drive the Dollar?'. C Tille , N Stoffels , O Gorgatchev .
427 *Current Issues in Economics and Finance* 2001. p. .

428 [Chinn and Alquist ()] 'Tracking the Euro's Progress'. M D Chinn , R Alquist . *International Finance* 2000. 3 p.
429 .

430 [Stock et al. ()] 'Vector Autoregressions'. J H Stock , W Mark , Watson . *Journal of Economic Perspectives* Fall
431 2001. 15 (4) p. .