

1 Electricity Consumption and Economic Growth in Bangladesh: 2 Co-Integration and Causality Analysis

3 Mahedi Masuduzzaman¹

4 ¹ University of Greenwich, United Kingdom

5 *Received: 6 December 2011 Accepted: 4 January 2012 Published: 15 January 2012*

6

7 **Abstract**

8 This paper tries to investigate the relationship between economic growth, electricity
9 consumption and investment for Bangladesh through co-integration and causality analysis
10 over the period 1981 to 2011. Using ADP and PP unit root tests it is found that all the three
11 variables are integrated of order 1. The Johansen co-integration tests indicate that all the
12 variables are co-integrated with one co-integrating vector. The Granger F test results show
13 the existence of unidirectional causality running from electricity consumption to economic
14 growth, electricity consumption to investment and investment to economic growth without
15 feedback in the short run. The source of causation in the long run is also found to be the error
16 correction terms from electricity consumption and economic growth to investment. The long
17 run elasticity of economic growth with respect to electricity consumption and investment are
18 higher than their short run elasticity. This implies that over time higher electricity
19 consumption and investment in Bangladesh give rise to more economic growth.

20

21 **Index terms**— Electricity consumption, economic growth, investment, short-run and long-run elasticity,
22 co-integration, granger causality.

23 **1 Introduction**

24 Electricity is a flexible form of energy and critical resource for modern life and a vital infrastructural input for
25 economic development. In all economies, households and companies have extensive demand for electricity. This
26 demand is driven by such important factors as industrialization, extensive urbanization, population growth,
27 rising standard of living and even the modernization of the agricultural sector. There is widespread discussion
28 and research over the topic of relationship between electricity consumption and income particularly since early
29 seventies of the last decades. Obviously, the degree of interest intensified since the Kraft and Kraft (1978)
30 findings. They found evidence of a uni-directional causal relationship running from GNP to energy consumption
31 in the United States using data spanning from 1947 to 1974.

32 Electricity is a major source of energy in the industrial and agricultural sectors in Bangladesh. These two
33 sectors collectively contribute to 50.3% of Bangladesh's GDP. The contribution of agricultural and industry
34 sector to GDP in fiscal year 2010-11 was 19.9% and 30.4% respectively (Bangladesh Bank, 2012). The share of
35 agriculture and industry sectors in electricity consumption is increasing gradually. According to the Bangladesh
36 Power Development Board (BPDB) statistics about 45% (1995 to 2010) of total electricity was consumed by
37 agriculture and industrial sectors. These statistics indicate that industry and agriculture together contribute
38 significantly to GDP and electricity consumption as well. From this we can infer, therefore that electricity
39 consumption plays an important role in economic growth of Bangladesh. It is, therefore important to identify
40 the relationship between electricity consumption and national output and also their direction of causality to get
41 a better understanding of the issues involved and determine the policy strategies. That is why in this study the
42 main purpose is made to examine the causal relationships between electricity consumption, economic growth and
43 investment for Bangladesh using the time series data spanning from 1981 to 2011.

5 REVIEW OF RELATED STUDY

44 This paper is divided into six sections. The section one of this study is the introductory part. The rest of the
45 study is organized into another five sections. The second section of the study will present contextual information
46 of the study where we discussed regarding current and future situation of Bangladesh's power sector. Section
47 three is the literature review section, where we present relevant literatures that will give us sound conception
48 of the fact. The section four provides an avenue regarding research methodological approach and the relevant
49 information on the time series data sets that are used for this study, while section five is discussed the empirical
50 results. Finally, section six will provide the conclusion that will point out the possible policy recommendations
51 of the study.

52 2 II.

53 3 Contextual Information Of The Study

54 The electricity infrastructure plays an important role in economic growth and employment generation for
55 developing countries more than the developed ones (Chen et. al. 2007). In Bangladesh, expansion of economic
56 activities is restrained by the underdeveloped electricity infrastructure. The energy sector is poorly managed
57 (Mozumder and Marathe, 2007) and characterized by the limited coverage of supply, inefficiency, poor quality
58 of services and huge government subsidies (Temple, 2002). The supply of electricity is inadequate to meet the
59 growing demand. As a result frequent electrical power outages or loadshedding are used to manage the gap between
60 power generation and demand of electricity in Bangladesh (Buyssse et. al. 2012). The production of electricity
61 has increased over the years but failed to match the high demand of electricity leading to chronic shortage in
62 power supply. Therefore, historically Bangladesh is electricity deficit country that has clear impact on economic
63 activities. Though per capita electricity consumption increased from 75.88 Kilowatt hour (KWh) in 1995 to
64 180.08 KWh in 2011(BPDP, 2011) but remained one of the least per capita electricity consuming economies in
65 the world ??CPD, 2011).

66 At present 50% of the people in Bangladesh have access to electricity and the demand of electricity is
67 increasing at a rate of 10% every year (FD, 2011). Considering the necessity of electricity and the achievement
68 of 10 percent Gross Domestic Products (GDP) growth by 2021, Government has undertaken immediate, short,
69 medium and long term programs for overall balanced development and revamps the electricity sector. Some
70 of these development programs include i) installment of gas based power generation plants ii) establishment
71 of nuclear power plants iii) generating environment friendly electricity from renewable energy sources iv)
72 massive transmission and distribution programs to ensure uninterrupted power supply v) energy savings and
73 energy efficiency programs for billing efficiency, optimum use of electricity and reduction of system loss vi)
74 rehabilitation and enhancement of efficiency of old power plants and set up new power plants through public-
75 private participation and regional co-operation to import electricity from neighboring countries ??FD, 2011).

76 According to the Bangladesh Power Development Board (BPDB) estimation, peak demand of the electricity
77 will be increased faster rate. The peak demand of electricity will be 10,283 Megawatt (MW) by 2015. In
78 Bangladesh a huge amount of natural gas is used to generate electricity, as most of the existing power plants are
79 gas-based. About 83% of total electricity was produced from gas-based power plants and rest of the electricity
80 produced from fuel in 2011(FD, 2011). To achieve the target to generate 10,283 MW by required. In this regard
81 Government has taken necessary steps to increase the foreign and domestic investment. Government has also
82 increased the budget allocation in power sector over time. The development budget allocation gradually increased
83 over the year. The allocation of total development budget in 2009-10 fiscal year was about TK. 20 billion and
84 for fiscal year 2011-12 it is TK. 71.53 billion, which is about 26% of total development budget and 7.5 percent of
85 national budget (FD, 2011).

86 4 III.

87 5 Review Of Related Study

88 The study of the characteristics of economic dynamics and electricity sector has been an area of interest of
89 researchers for long time. However, the pioneering work is investigating causal relationship between economic
90 growth and energy consumption was done by ??raft and Kraft (1987). The existing literature focuses on developed
91 and some developing economies. Different results have been found for different countries and different time
92 periods. Those studies used different proxy variables for energy usage. This study will concentrate on the existing
93 literature that is similar to our study. a) Literature Review: Bangladesh Reviewing the existing literature on
94 economic growth and electricity consumption, we find only a few studies regarding Bangladesh. Most of those
95 studies fall into the omitted variable(s) trap as they only examined the energy-growth nexus in a bi-variate
96 framework. But our study include important variable like investment. Ahmad and Islam (2011) conducted a
97 research on Bangladesh scenario. They found short-run unidirectional causality running from per capita electricity
98 consumption to per capita GDP without feedback applying co-integration and VECM based Grangercausality
99 test for the period spanning from 1971 to 2008. They also found long-run bidirectional causality running from
100 per capita electricity consumption to per capita consumption and economic growth but no causal relationship
101 exists in short run. Applying Granger causality tests on the nexus between economic growth 2015 huge amount of
102 public and private investment GDP. ??saduzzaman and Billah (2008) found positive relationship between energy

103 consumption and economic growth for Bangladesh using data spanning from 1994-2004 and reported that higher
104 level of energy use led to higher level of growth. Buysse et. al. (2012) investigated the possible existence of
105 dynamic causality among electricity consumption, energy consumption, carbon emissions and economic growth
106 in Bangladesh. The results indicate that uni-directional causality exists from energy consumption to economic
107 growth both in short and long run, While bi-directional long run causality exists between electricity and electricity
108 generation, Alam and Sarker (2010) claims that there exists short run causal relationship running from electricity
109 generation to economic growth without feedback. On the other hand Mozumder and Marathe (2007) found reverse
110 relationship that is unidirectional causality from GDP to electricity consumption for Bangladesh over the period
111 1971 to 1999 by employing Co-integration and Vector Error Correction Model (VECM).

112 **6 b) Literature Review: South Asia**

113 There are some notable studies conducted in the South Asian region. Ghosh (2002) conducted a study using
114 annual data covering the period of 1950-51 to 1996-97 in India and found that unidirectional Granger causality
115 existed running from economic growth to electricity consumption. But, the same author in 2009 claimed that
116 there was unidirectional causality running from economic growth to electricity c) Literature Review: Developed
117 and Developing Countries Asafu-Adjaye (2000) investigated the existence of causal relationship between energy
118 consumption and output in four Asian countries using the co-integration and error-correction mechanism and
119 pointed out that unidirectional causality ran from energy consumption to output in India and Indonesia. However,
120 bi-directional causality was found in case of Thailand and the Philippines. Akinlo (2009) conducted a study in
121 Nigeria to investigate relationship between economic growth and electricity consumption during the period 1980
122 to 2006. The result exhibits that there is unidirectional Granger causality running from electricity consumption
123 to real GDP and suggested use of electricity could stimulate the Nigerian economy.

124 China, the largest developing country uses huge amount of energy. Recently, more attention has been given in
125 China to determine the short run and long run causal relationship between electricity consumption and economic
126 growth. However, conflicting result have been revealed by different researchers. Using yearly data covering the
127 period 1978 to 2004 and applying cointegration and Granger causality approaches Yuan et. al. (2007) indicated
128 that electricity consumption and real GDP for China were co-integrated and there was unidirectional Granger
129 causality from electricity consumption to real GDP. Shiu and Lam (2004) claimed that causality existed running
130 from electricity consumption to economic growth for the period 1971 to 2000. On the other hand, Lin (2003)
131 covered the 1978-2001 period and found that economic growth causes electricity consumption. Chontanawat et.
132 al. (2008) investigated the existence of causal relationship between energy economic growth nexus in 30 OECD
133 developed economies and 78 non-OECD developing economies. They pointed out that causality running from
134 energy consumption to GDP. However, the result was more prevalent in the developed OECD economies compare
135 to the developing non-OECD economies. Employing cointegration and VECM, Belloumi (2009) pointed out
136 Tunisian per capita energy consumption in the short-run caused to per capita GDP and there were bidirectional
137 long-run causal relationship between the series for the period of 1971 to 2004. Ouedraogo (2010) found that there
138 was a long run bi-directional causal relationship between electricity consumption and GDP for Burkina Faso for
139 the period spanning from 1968 to 2003 and claimed electricity was a significant factor in economic development.
140 Chandran et. al. (2010) considered the relationship between electricity consumption and real GDP growth in
141 case of Malaysia. Employing autoregressive distributed lag (ARDL), the result indicated that there was positive
142 relationship between electricity consumption and real GDP. The causality test confirms the uni-directional causal
143 flow from electricity consumption to real GDP and the findings conclude that Malaysia is an energy-dependent
144 country.

145 **7 IV. Data Description And Research Methodology a) Data 146 Description**

147 The empirical analysis of the study is conducted by using time series data of total Electricity consumption, total
148 real Gross Domestic Product (GDP) and total investment for the period spanning from 1981 to 2011 (Fiscal
149 Year, July to June). The choice of the starting period was constrained by the availability of time series data
150 on electricity consumption. The data of total electricity consumption is expressed in terms of Gigawatt hours
151 (GWh) and obtained from annual report, published by Bangladesh Power Development Board's consumption in
152 the short run. Lean and Shahbaz (2012) claim that electricity consumption has positive impact on economic
153 growth and bi-directional Granger causality has been identified between electricity consumption and economic
154 growth in Pakistan. However, Ahmad and Jamil (2010) using annual data for the period of 1960-2008, found
155 the presence of unidirectional causality from economic activity to electricity consumption. Morimoto and Hope
156 (2004) pointed out that current as well as past changes in electricity supply have a significant impact on a change
157 in real GDP in Sri Lanka. Saeki and Hossain (2011) found existence of unidirectional causality from economic
158 growth to electricity consumption in India, Nepal and Pakistan, and from electricity consumption to economic
159 growth in Bangladesh.

160 Therefore the above literature reveals that due to the application of different econometric methodologies and
161 different sample sizes, the empirical results are very mixed and even vary for the same country and are not
162 conclusive.

9 V. EMPIRICAL RESULTS

163 (BPDB). On the other hand, real GDP (which is a proxy to economic growth) and total investment series is in
164 constant price (base year 1995-96) of BDT (Billion) and obtained from Bangladesh Bureau of Statistics (BBS).

165 The following figure-1 describes the historical movements of total electricity consumption, real GDP and total
166 investment over the time period 1981 to 2011. All the series shows upward trend.

167 8 Fig.1 : Historical trends of total electricity consumption 168 (GWh), total real GDP and total investment

169 To provide an overall understanding of the chosen variables we include summary statistics for full sample in
170 the following Table1 : Summary Statistics of real GDP, Investment and Electricity Consumption It should
171 be mentioned here that electricity consumption and economic growth shows almost constant correlation in
172 Bangladesh. The other two pairs also presence high time varying correlation. Considering the GDP and electricity
173 consumption, the plotted time varying correlations range in a corridor with the lowest value of 0.91 in 1989 and
174 almost near 1.00 rest of the years, while correlations between electricity consumption and investment to be found
175 lowest 0.61 in 1990(Figure ??2). We also note that the correlation between GDP and investment maintains high
176 correlations except very little deviations (6%) in 2007. Generally we see that time series data is nonstationary
177 but the model can only be built once the given time series are stationary. According to the Engle and Granger
178 (1987) if independent series are stationary then the series are said to be co-integrated. To investigate, whether
179 the given time series are stationary, there are several procedure found in the econometric literature. It is evident
180 that each test has its own merits and demerits. In our study, we use two test in this regard such as Augmented
181 Dickey Fuller (1979) and Phillips Peron (1988) test to avoid the criticisms of individual test. Appropriate lag
182 lengths are selected according to the Akaike Information Criterion (AIC) method.

183 We performed the ADF tests based on the following model Where Δ = first difference operator, n = optimal
184 number lags, ϵ = disturbance term consider as a white noise error, y = time series that is GDP, investment and
185 electricity consumption. The PP test are based on the following model Where Δ = first difference operator, β =
186 constant, ϵ = error and y = time series that is GDP, investment and electricity consumption.

187 ii. b2 Johansen Co-integration and VECM For co-integration test it is required that the chosen time series that
188 is GDP, investment and electricity consumption to be integrated of the first order I (1), when this condition satisfy
189 then we can move into examine the existence of long run co-integration relationship of the chosen time series.
190 In this regards, we will be employed Johansen co-integration test. Johansen method indicates the maximum
191 likelihood procedure to identification of existence of co-integrating vectors for chosen non-stationary time series
192 data. The Johansen methods allow us to determining the number of co-integrating vector. These tests directly
193 investigate the integration in Vector Auto-regression (VAR) model. Appropriate lag lengths are selected according
194 to the Akaike Information Criterion (AIC) method. We can write the VAR of order p in the following way.

195 Where represents $n \times 1$ vector that integrated I (1) and is $n \times 1$ -vector innovations. $\beta = -T \Delta \beta \beta' \mathbf{1} \ln(1-\beta)$
196 $\beta_j \dots$ (iv) $\max \beta = -T \ln(1-1 \beta \mathbf{1} \beta' \mathbf{1}) \dots$ (v) $j \beta \text{ trace } \beta' \mathbf{1}$

197 Eigen value test tests the null of r cointegrating vectors against the alternative hypothesis of $r+1$ cointegrating
198 vectors. $\max \beta$ (If two or more series co-integrated then it implies that causality exists among the series but it
199 does not indicate the direction of the causal relationship. Thus the dynamic Granger causality can be captured
200 based on Vector Error Correction Model (VECM) will be employed to determine the causality direction between
201 economic growth, electricity consumption and investment. To ascertain the causality direction, we estimate the
202 following VECM:

203 Where refers to the error correction term derived from the long-run co-integrating relationship. This is also
204 measures the magnitude of the past disequilibrium and the coefficients of represents the deviation of the dependent
205 variables from the long run equilibrium.

206 iii. b3 Short-run and long-run elasticity Saeki and Hossain (2011) applied following model to obtain short-run
207 (Model -vii) and long-run (Model-viii) elasticity. We will be employed the same.

208 Where the random error term, and are the parameters to be estimated This equation is augmented with lead
209 and lagged differences of the dependent and explanatory variables to control for serial correlation and endogenous
210 feedback effects.

211 9 V. Empirical Results

212 The order of integration of the time series is investigated by applying both Augmented Dickey Fuller (1979)
213 and Philips Perron(1988) tests. We include trend and constant term in the both tests. The following table -2
214 exhibits the results of unit root tests on natural logarithms of the levels and the first differences of real GDP,
215 electricity consumption and investment, where evidence was found in favour of the null hypothesis that all series
216 contain unit roots at level. However, we reject the null hypothesis for the first differences of all series. Therefore,
217 it is concluded that all the series are integrated of the order 1 i.e. I (1). Thus co-integration tests can be
218 applied for all variables. 0.05 -Our next aim is to investigate whether or not real GDP, electricity consumption
219 and investment share common long run relationships. To achieve this, as explained earlier we consider both
220 the trace statistic and Maximum Eigen Value Statistic test to investigate the long run relationship among the
221 variables. The primary step in the Johansen co-integration test is to determine the optimal lag length for each
222 VAR model. This study identified the optimal number of Lag by using Akaike Information Criteria (AIC) and

223 considered the minimized Notes: *indicates significant at 1% level, ** indicates significant at 5% level criterion
224 value. The results of Johansen co-integration test shown in table-3, where we find that the null hypothesis of
225 no co-integration can be rejected using Table ?? : Result of the Johansen Co-integration Test We have found
226 that the chosen time series are co-integrated and there exist long run relationship that indicates there must be
227 Granger causality in at least one direction, but it does not indicate the direction of temporal causality among
228 the variables. The direction of causality can be divided into short and long run causation. We then, therefore
229 explore the dynamic Granger causality in the (Vector Error Correction Model) VECM specification to obtain
230 both short-run and longrun direction. The short-run causal effects can be obtained by the F-test of the lagged
231 explanatory variables, while the t-statistics on the coefficient of the lagged error correction term in model (vi)
232 indicates significance of the long-run causal effect.

233 Beginning with the long-run causality, the coefficient of is having a negative sign in all equations except when
234 GDP acts as the dependent variables. In investment equation we can see that the coefficient of is -0.35 (table
235 -4) and is significant at 05% level that confirms the unidirectional long run relation from GDP and electricity
236 consumption to investment with no feedback. The significant negative coefficient of error correction term implies
237 that the variable is not overshooting and thus the long run relationship is attainable in investment equation.
238 That is if the system is exposed to a shock, it will be converge to the long run equilibrium at 35% per year. The
239 coefficient of is negative in electricity consumption equation but insignificant. The coefficient of is positive in
240 GDP equation which means that any exogenous shock in one of the variables may be lead to divergence from
241 equilibrium. Therefore in case of shock in the GDP, there may be 3% divergence from equilibrium per year.

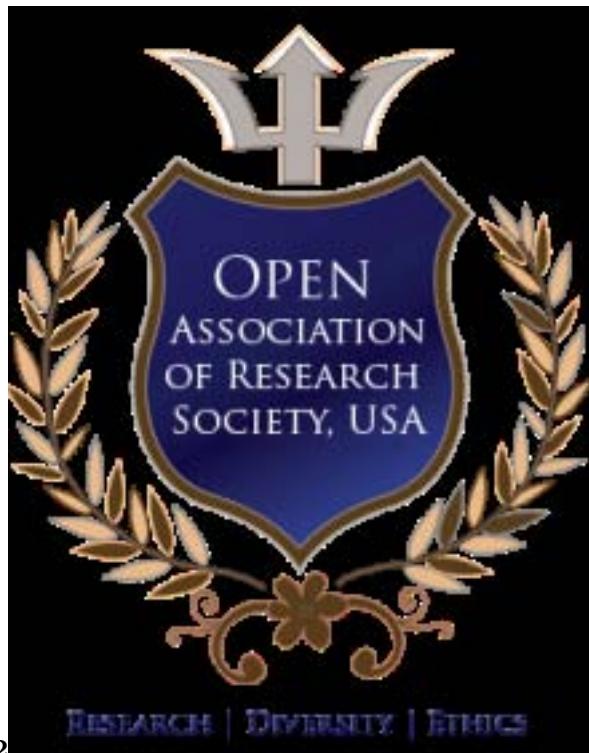
242 In the short-run there is unidirectional causality running from electricity consumption to GDP, Electricity
243 consumption to Investment and Investment to GDP but not the reverse. This implies that electricity consumption
244 acts as a stimulus to investment and economic growth as well and high levels of economic growth demands a high
245 level of electricity consumption. The result also show that in the short run investment causes GDP, which simply
246 suggests that a high level of investment leads to high level of economic growth. These finding indicates that in
247 Bangladesh electricity generation polices should aimed at improving the power infrastructure and increasing the
248 power supply are the appropriate options to boost the economic growth.

249 The finding of our study is on the line with earlier findings of Ahamad and Islam (2011); as they revealed
250 the causality from energy consumption to GDP for Bangladesh. Our result is also consistent with the finding
251 of ??saduzzaman and Billah (2008) as they claims higher level of energy use led to higher level of growth in
252 Bangladesh. Our result also consistence with the finding of Alam and Sarker (2010), as they revealed that
253 short run causal relationship running from electricity generation to economic growth without feedback. The
254 findings of our study also partly consistent with the findings of Buysse et. al. (2012) as their results indicate
255 that uni-directional causality exists from energy consumption to economic growth both in short and long run
256 while bi-directional long run causality exists between electricity consumption and economic growth but no causal
257 relationship exists in short run. However, our result is totally conflicting with the finding of Mozumder and
258 Marathe (2007) because they reveal that there is unidirectional causality from GDP electricity consumption for
259 Bangladesh over the period 1971 to 1999. This contradiction can be argued upon with a plausible view that
260 the time series are different. We estimate the short and long run elasticity based on model (vii) and (viii). The
261 estimated results are given below in table-5. The findings indicate that the short-run and long-run electricity
262 consumption and investment have significant positive impact on economic growth for Bangladesh. The long-run
263 elasticity of economic growth.

264 with respect to electricity consumption is (0.12) higher than short-run elasticity (0.09) and also the longrun
265 elasticity of economic growth with respect to investment is (0.78) higher than short-run elasticity (0.50), indicate
266 that over time higher electricity consumption and higher investment in Bangladesh give rise to more economic
267 growth.

268 10 VI. Conclusion And Policy Implications

269 The main goal of this paper was the examination of causal interdependences between economic growth, electricity
270 consumption and investment in Bangladesh. For this purpose, the study focused on total electricity consumption,
271 total real GDP and total investment for the period spanning from 1981 to 2011. This paper applies the ECM
272 model to examine the causal relationship among the chosen variables. Prior to testing for causality, the ADP/PP
273 test and Johansen co-integration test were used to examine for stationarity and long-run co-integration. Results
274 from the Johansen co-integration test show the existence of long run equilibrium among the variables, while
275 the causality results confirm unidirectional causal relationship running from electricity consumption to economic
276 growth in the short run. The causality results also exhibit that electricity consumption causes investment and
277 investment causes economic growth but not the vice versa. The source of causation in the long run is also found
278 to be the error correction terms from electricity consumption and economic growth to investment. The long run
279 elasticity of economic growth with respect to electricity consumption and investment are higher than their short
280 run elasticity. This implies that over time higher electricity consumption and higher investment in Bangladesh
281 give rise to more economic growth. Our overall findings indicate that Bangladesh is an energy (electricity)
282 dependent country. This implies that an increase in electricity consumption raises economic growth. We also
283 find that an increase in electricity consumption raises investment and obviously an increase in investment raises
284 economic growth. Therefore, emphasis should be given on electricity generation and more investment. There is


10 VI. CONCLUSION AND POLICY IMPLICATIONS

285 no other alternative for economic growth than to generate more power for Bangladesh, needed especially for
286 transforming into a middle income country by 2021. However, a question may be raised as to whether electricity
287 consumption could boost the economic growth alone; the answer is simply no. Because, electricity consumption
288 is one of the influencing factors not all. Along with generation of more power, government should ensure a
289 business friendly environment to encourage local and overseas investors to invest more. Only in that case more
290 electricity will lead to increased economic activities otherwise it would be costly. In this regard, government may
291 take policy action to increase power generation as well as attract local and foreign investors to invest in energy
292 and other sectors. As we mentioned earlier, the findings of our study emphasizes the consumption of electricity
293 as a prerequisite of achieving higher economic growth for Bangladesh so high priority should be placed not only
294 on power generation but also on the issues of appropriate electricity distribution and management system in the
295 short-run and medium term policies of the government to take the country to middle status by 2021.

296 Bangladesh uses a huge amount of gas and fuel to generate electricity (Finance Division, 2011). So, Ministry
297 of power, energy and mineral resources may continue to investigate and exploit the possibilities of renewable
298 energy and more use of coal for electricity generation as it can reduce reliance on imported fuels. Renewable
299 energy source and alternative source of electricity generation may change the power structure of Bangladesh. The
300 Ministry of Power and energy resources may extract coal from the Dinajpur coal field and generate electricity.
301 Renewable energy technology has an enormous potential to solve electricity problem in Bangladesh. The energy
302 provided by the sun (solar energy) is many times greater than the current electricity demand. The wind, waves
303 and tides have a large potential as well. It is to be understood that renewable energy may be the one of the vital
304 source of future electricity supply and the said traditional energy source like gas and fuel are coming to an end.

305 As investment positively affects GDP growth and electricity consumption affects investment, Bangladesh Bank
306 (Central Bank of Bangladesh) may undertake appropriate monetary policy to provide loan at cheaper rate in
307 banking sectors. The enhancement of capitalization towards small investors at cheaper cost helps in expanding
308 existing business and generates new business activities as well that means creates more employment opportunity,
309 increase purchasing power. So, investment considered as a leading indicator of economic activity, prosperity and
hence economic growth. ^{1 2 3 4}

42

Figure 1: Fig 4 . 2 :

Figure 2: Global

$\times [RCY_{s-1}]$

Figure 3:

1. The table shows that

11,015.35 GWh, TK. 1914.21 billion and TK. 436.20 billion respectively. The high standard deviations indicate that electricity consumption, GDP and

during the period average electric consumption, average real GDP and average investment was

investment are increased in the recent past in Bangladesh.

Figure 4: table -

2

Figure 5: Table 2 :

4

both the trace) and Max Eigen Value) at 5% level. trace Statistics (? max ? statistic (

Total GDP, Electricity Consumption and Investment	r=o r ? 1 r ? 2	Null	Trace	05%	Max Eigen	05%
		hypothesis	Statistic (trace ?)	Critical Value	Statistic(Critical Value
					max ?)	

Figure 6: Table 4 :

5

Figure 7: Table 5 :

¹Global Journal of Management and Business Research Volume XII Issue XI Version I

²© 2012 Global Journals Inc. (US) July integrating vector. The Granger F test results Confirmed the

³© 2012 Global Journals Inc. (US) July

⁴© 2012 Global Journals Inc. (US) July .7 .8.91

310 [Energy Economics] , *Energy Economics* 26 p. .

311 [Yuan et al. ()] , J Yuan , C Zhao , S Yu , Z Hu . 2007.

312 [Chontanawat et al. ()] , J Chontanawat , L C Hunt , R Pierse . 2008.

313 [Belloumi ()] , M Belloumi . 2009.

314 [Alam and Sarker ()] , K Alam , A R Sarker . *Nexus between Electricity Generation and Economic Growth in*
315 2010. 6 (12) p. . (Asian social Science)

316 [Ahamad and Islam ()] , M G Ahamad , A K M N Islam . 2011.

317 [Buysse et al. ()] , J Buysse , I A Begum , M J Alam , G V Huylenbroeck . 2012.

318 [On (2012)] , Accessed On . April 05, 2012.

319 [Asafu-Adjaye ()] J Asafu-Adjaye . *The Relationship between Energy Consumption, Energy Prices and Economic*
320 *Growth: Time Series Evidence from Asian Developing Countries*, 2000. 22 p. .

321 [Bangladesh Bureau of Statistics ()] <http://www.bbs.gov.bd/home.aspx> Bangladesh Bureau of Statistics,
322 2012.

323 [Bangladesh Power development Board BPDB (2012)] ‘Bangladesh Power development Board’. <http://www.bpdb.gov.bd/bpdb/Accessedon> BPDB 2012. April 28. 2012.

324 [Gujarati and Porter ()] *Basic Econometrics*, D Gujarati , D Porter . 2009. London, McGraw Hill. (5th revised
325 edition)

326 [Mozumder and Marathe ()] ‘Causality relationship between electricity consumption and GDP in Bangladesh’.
327 P Mozumder , A Marathe . *Energy Policy* 2007. (35) p. .

328 [Bank (2012)] *Central Bank of Bangladesh, Economic data*, Bangladesh Bank . <http://www.bangladesh-bank.org/Access> 2012. on April 05,2012.

329 [Chen et al. ()] S-T Chen , H-I And Kuo , Chi-C Chen . *The relationship between GDP and electricity*
330 *consumption in 10 Asian countries*, 2007. 35 p. .

331 [Engle and Granger ()] ‘Cointegration and Error Correction: Representation, Estimation, and Testing’. R F
332 Engle , C W J Granger . *Econometrica* 1987. 55 p. .

333 [Saeki and Hossain ()] ‘Does Electricity Consumption Panel Granger Cause Economic Growth in South Asia?
334 Evidence from Bangladesh’. C Saeki , M S Hossain . *European Journal of Social Sciences* 2011. 25 (3) p. .

335 [Does energy consumption cause economic growth? countries Journal of Policy Modeling] ‘Does energy con-
336 sumption cause economic growth? countries’. *Journal of Policy Modeling* 30 (2) p. .

337 [Ouedraogo ()] ‘Electricity Consumption and Economic Growth in Burkina Faso: A Co-Integration Analysis’. I
338 M Ouedraogo . *Energy Economics* 2010. 32 p. .

339 [Shiu et al. ()] ‘Electricity consumption and economic growth in China’. Alice Shiu , Lam , Pun-Lee . *Energy*
340 *Policy* 2004. 32 (1) p. .

341 [Electricity Consumption and Economic Growth in China: Co-integration and Co-feature Analysis Energy Economics]
342 ‘Electricity Consumption and Economic Growth in China: Co-integration and Co-feature Analysis’. *Energy*
343 *Economics* 29 p. .

344 [Ghosh ()] ‘Electricity consumption and economic growth in India’. S Ghosh . *Energy Policy* 2002. p. .

345 [Akinlo ()] ‘Electricity Consumption and Economic Growth in Nigeria: Evidence from Cointegration and Co-
346 feature Analysis’. A E Akinlo . *Journal of Policy Modeling* 2009. 31 p. .

347 [Electricity consumption and economic growth nexus in Bangladesh: Revisited evidences Energy Policy]
348 ‘Electricity consumption and economic growth nexus in Bangladesh: Revisited evidences’. *Energy Policy* p. .

349 [Chandran et al. ()] ‘Electricity Consumption-growth Nexus: The case of Malaysia’. V G R Chandran , K
350 Madhavan , S Sharma . *Energy Policy* 2010. 38 p. .

351 [Ghosh ()] ‘Electricity supply, employment and real GDP in India: evidence from co-integration and Granger-
352 causality tests’. S Ghosh . *Energy Policy* 2009. 37 p. .

353 [Asaduzzaman and Billah ()] ‘Emerging Issues in Bangladesh Economy: A Review of Bangladesh’s Development
354 2005-06’. M Asaduzzaman , A H M Billah . *Energy for future Bangladesh; Centre for Policy Dialogue (CPD)*,
355 2006. 14 p. .

356 [Energy Consumption and GDP in Tunisia: Co-integration and Causality Analysis Energy Policy] ‘Energy
357 Consumption and GDP in Tunisia: Co-integration and Causality Analysis’. *Energy Policy* 37 p. .

358 [Energy Consumption, Carbon Emissions and Economic Growth Nexus in Bangladesh: Co-integration and Dynamic Causality An-
359 *Energy Consumption, Carbon Emissions and Economic Growth Nexus in Bangladesh: Co-integration and*
360 *Dynamic Causality Analysis; Energy Policy*, p. .

361 [Kraft and Kraft ()] J Kraft , A Kraft . *On the relationship between energy and GNP*, 1978. p. .

10 VI. CONCLUSION AND POLICY IMPLICATIONS

364 [Power and Energy Sector Road Map: An Update, Ministry of Finance ()] *Power and Energy Sector Road Map: An Update, Ministry of Finance*, 2011. Bangladesh.

365

366 [State of Bangladesh Economy in FY 2010-11 (second Reading), Centre for Policy Dialogue(CPD) ()] *State of Bangladesh Economy in FY 2010-11 (second Reading)*, Centre for Policy Dialogue(CPD), 2011. Dhaka.

367

368 CPD

369 [Johansen ()] ‘Statistical analysis of cointegration vectors’. S Johansen . *Journal of Economic Dynamics and Control* 1988. 12 p. .

370

371 [Lin ()] ‘Structural change, efficiency improvement and electricity demand forecasting’. B Lin . *Economic Research* 2003. 5 p. . (in Chinese)

372

373 [Temple (2002)] F Temple . *Energy Subsidies in Bangladesh: Magnitude and Beneficiaries*. Dhaka Chamber of Commerce and Industries, (Bangladesh) 2002. June 2009.

374

375 [Lean and Shahbaz ()] ‘The dynamics of electricity consumption and economic growth: A revisit study of their causality in Pakistan’. H H Lean , M Shahbaz . *Energy* 2012. 39 p. .

376

377 [Morimoto and Hope ()] *The impact of electricity supply on economic growth*, R Morimoto , C Hope . 2004. Sri Lanka.

378

379 [Ahmad and Jamil ()] ‘The relationship between electricity consumption, electricity prices and GDP in Pakistan’. E Ahmad , F Jamil . *Energy Policy* 2010. (38) p. .

380