

1 Measuring the Systematic Risk of South Pars Field

2 Dr. Vida Varahrami¹

3 ¹ University of Tehran, Tehran, Iran.

4 *Received: 11 December 2011 Accepted: 3 January 2012 Published: 15 January 2012*

5

6 **Abstract**

7 Iran is the biggest producer of natural gas. The most significant energy development project
8 in Iran is South Pars field which is the biggest natural gas field of world. Capital asset pricing
9 model (CAPM) is a famous model for measuring relation between risk and return. In this
10 paper we extract systematic risk (?) of South Pars project which cannot be diversified away.

11

12 **Index terms**— Natural Gas, South Pars Field, Capital Asset Pricing Model (CAPM), Systematic Risk (?
13).

14 **1 Introduction**

15 The most significant energy development project in Iran is the offshore South Pars field, which produces about
16 35 percent of total gas produced in Iran. Discovered in 1990 and located 62 miles offshore in the Persian Gulf,
17 South Pars has a 24 phase's development scheme spanning 20 years. Each phase has a combination of natural
18 gas with condensate and gas liquids production. Phases 1-10 are online. The majority of South Pars natural gas
19 development will be allocated to the domestic market for consumption and gas re-injection. The remainder will
20 be exported as liquefied natural gas (LNG) and used for gas to liquids (GTL) projects.

21 In this paper, Section 2 provides background. In Section 3, CAPM is presented. In Section 4, systematic risk
22 (?), section 5 South Pars field and in section 6 empirical results are presented and Section 7 covers conclusion.

23 **2 II.**

24 **3 Background**

25 A study by ??ouglas (1969) showed that intercepts were larger than existing risk free rates and the coefficients
26 for the systematic risk were not significant. Sharpe and Cooper (1972) discovered a positive return and risk
27 relationship between NYSE common stocks during the period 1931-67, although it was not completely linear.

28 Black, Jensen and Scholes (1972) studied the risk and return relationship for portfolio of stocks and found
29 a positive linear relationship between monthly excess return i.e. return over and above the risk free rate and
30 portfolio beta, although the intercept was higher than the expected value. Fama and French (2004) revealed that
31 empirical work since the late 1970s challenged the Black version of the CAPM. Specifically, evidence mounts that
32 much of the variation in expected return is unrelated to market beta.

33 A study by ??asu (1977) showed that when common stocks were sorted on the basis of earnings/price ratios,
34 future returns on high E/P stocks were higher than those predicted by the CAPM. Banz (1981) documented
35 a size effect; when stocks were sorted on the basis of market capitalization (price times shares outstanding),
36 average returns on small stocks were higher than those predicted by the CAPM. ??handari (1988) found that
37 high debt-equity ratios (book value of debt over the market value of equity, a measure of leverage) also helped
38 explain the cross section of average returns after both beta and size are considered. A study by ??ama and
39 French (1992) concluded that during the period 1963 to 1990, beta was not relevant. The study also showed that
40 the most significant predictor variables were book to market value and size.

41 Ansari, Naeem and Zubairi (2005) stated that, according to CAPM, the market rewards risk bearing, since
42 people are generally risk averse. The risk premium for the aggregate of all risky assets must be positive to induce
43 people to hold the total amount of risky assets in a financial system. The market (according to CAPM theory)

6 SOUTH PARS FIELD

44 rewards only efficient risk bearing. The risk premium on any individual security is not related to its own risk but
45 to its contribution to the total risk of an efficiently diversified portfolio.

46 Zubairi and Farooq (2011) investigates whether CAPM and APT are valid models for determining price/return
47 of the fertilizer and the oil & gas sector companies listed on the Karachi Stock Exchange (KSE). The purpose
48 of their research is also to identify plausible reasons for deviations from the theories. The conclusions arrived at
49 through data analysis reveal weak correlation between realized excess returns (i.e. actual returns over and above
50 the risk free rate) and the expected return based on CAPM. With respect to APT model, the study reflects that
51 macroeconomic factors including changes in GDP, inflation, exchange rate and market return do not serve as
52 valid determinants of returns on oil, gas and fertilizer stocks.

53 4 III. CAPM (Capital Asset Pricing Model)

54 CAPM developed by Sharpe (1964), Lintner (1965) and Mossini (1965) builds upon the "Portfolio Theory"
55 introduced by Harry Markowitz ??1959). CAPM presents the basis for determining the required rate of return
56 on all risky assets 1 .

57 The CAPM provides an elegant model of the determinants of the equilibrium expected return ER_i on any
58 individual risky asset in the market. It predicts that the expected excess return on an individual risky asset ($ER_i - r_f$)
59 is directly related to the expected excess return on the market portfolio ($ER_m - r_f$)
60 with the constant of proportionality given by the beta of the individual risky asset: $(ER_i - r_f) = \beta_i (ER_m - r_f)$ (1)

61 Where $\beta_i = \text{cov}(R_i, R_m) / \text{var}(R_m)$ (2)

62 The CAPM explains the expected excess return on asset i , given the expected market excess return. The
63 CAPM is not a predictive equation for the return on asset i , since both the dependent and independent variables
64 are dated at time t . Rather, the CAPM implies that contemporaneous movements in $(ER_i - r_f)$ are linked to
65 contemporaneous changes in the excess market return. ER_m is the expected return on the market portfolio
66 and is the 'average' return from holding all assets in the optimal proportions w 2 .

67 ER_m is the expected return on the market portfolio and is the 'average' return from holding all assets in the
68 optimal proportions $w^* = \text{cov}(R_i, R_m) / \text{var}(R_m)$. Since actual returns on the market portfolio differ from expected returns, the variance
69 $\text{var}(R_m)$ on the market portfolio is non-zero. The definition of firm i 's beta, indicates that equilibrium expected
70 return of asset i depends on: (i) The covariance between the return on security i and the market portfolio, $\text{cov}(R_i, R_m)$ (ii) Is inversely related to the variance of the market portfolio, $\text{var}(R_m)$.

72 IV.

73 5 Systematic Risk (?)

74 If we define the extra return on asset i over and above the risk-free rate as a risk premium, $ER_i = r_f + rp_i$ (3)

75 Then the CAPM gives the following expressions for the risk premium: $rp_i = \beta_i (ER_m - r_f) = \beta_m \text{cov}(R_i, R_m)$ (4)

76 The CAPM predicts that only the covariance of returns between assets i and the market portfolio influence the
77 cross-section of excess returns, across assets. No additional variables such as the dividendprice ratio, the size of
78 the firm or the earnings-price ratio should influence the cross-section of expected excess returns. All changes in
79 the risk of asset i is encapsulated in changes in $\text{cov}(R_i, R_m)$. Strictly, this covariance is a conditional covariance
80 -the agent at each point in time forms her best view of the value for the covariance/beta 3 .

82 V.

83 6 South Pars Field

84 This gas field covers an area of 9,700 square of which 3,700 square kilometers is in Iranian territorial waters and
85 6,000 square kilometers (North Dome) is in Qatari territorial waters 4 .

86 The South Pars Field was discovered in 1990 by National Iranian Oil Company 5 . The Pars Oil and Gas
87 Company. A subsidiary of NIOC has jurisdiction over all South Pars-related projects. Field development has
88 been delayed by various problems -technical (i.e., high levels of mercaptans and foul-smelling sulfur compounds),
89 contractual issues and recently politics 6 . Gas production started from the field by commissioning phase 2 in
90 December 2002 to produce 1 billion cubic feet per day of wet gas. Gas is sent to shore via pipeline, and processed
91 at Assaluyeh.

92 Condensate production from South Pars is currently 200,000 barrels per day, and by 2010, could increase to
93 over 500,000 barrels per day. As of December 2010, South pars gas field's production capacity stands at 75
94 million cubic meters of natural gas per day. Gas production at South Pars rose by nearly 30% between March
95 2009 and March 2010. The field's reserves are estimated at 14 trillion cubic meters of natural gas and 18 billion
96 barrels of natural gas condensates. Production at South Pars gas field will rise to 175 million cubic meters per
97 day in 2012.

98 NIOC is planning to develop the field in 24 to 30 phases, capable of producing about 25 billion cubic feet to
99 30 billion cubic feet of natural gas per day.

100 Each standard phase is defined for daily production of 1 billion cubic feet of natural gas, 1500 tones of liquefied
101 petroleum gas (LPG) and 200 tones of sulfur, however some phases have some different production plans.

102 2008 phases 6, 7, 8, 9 and 10 will be on stream. Phases 12, 15, 16, 17, 18, 19, 27 and 28 are under different
103 development stages 7 .

104 **7 VI.**

105 **8 Empirical Results**

106 Systematic risk is sensitive of ever share to return of market index. Therefore if systematic risk (σ) for a share
107 be bigger than 1, then industry is high risk and against if systematic risk (σ) be smaller than 1, then, industry
108 is low risk. In this paper, we want measure systematic risk (σ) of South Pars project.

109 For this aim, we use natural gas price and extract return of South Pars field production, then we use Matlab
110 7 software for modeling. According to this modeling, systematic risk (σ) of South Pars project is 1/036 and we
111 can conclude that this project is relatively high risk. This project is high risk, because we cannot use machines
112 and equipments of this field for other projects.

113 **9 VII.**

114 **10 Conclusion**

115 The South Pars field is a natural gas condensate field located in the Persian Gulf. It is the world's largest gas
116 field, shared between Iran and Qatar. According to the International Energy Agency (IEA), the field holds an
117 estimated 1,800 trillion cubic of in-situ natural gas and some 50 billion barrels of natural gas condensates 8 .

118 In this paper, we measure systematic risk (σ) for South Pars field. Results reveal that this project is relatively
119 high risk, because machines and equipments which uses in this project, cannot be used in other projects.

120 [Cutberson and Nitzsche] , K Cutberson , D Nitzsche . <http://www.offshore-technology.com/projects/southpars> *Quantitative Financial Economics* (Second edition 2)

121

122 [Iran Oil Ministry Annual Bulletin] , *Iran Oil Ministry Annual Bulletin* p. 5.

123 [Iran Oil Ministry Annual Bulletin] , *Iran Oil Ministry Annual Bulletin* (5th Edition,(available in Persian)

124 [Ansari ()] , Naeem Ansari , Zubairi . *Financial Management in Pakisan* 2005.

125 [Fama ()] E Fama , FrenchK . *The Capital Asset Pricing Model: Theory and Evidence*, 2004.

126 [Zubairi and Sh] *Testing the Validity of CAPM and APT in the Oil, Gas and Fertilizer Companies*, H Zubairi ,

127 Farooq Sh .