

1 Performance Evaluation of Faculties at a Private University A 2 Data Envelopment Analysis Approach

3 Ravindran Ramasamy¹, Dr. Azlina Shaikh Awadz² and Romiza Md Akhir³

4 ¹ University of Management and Technology

5 *Received: 25 March 2012 Accepted: 18 April 2012 Published: 3 May 2012*

6

7 **Abstract**

8 This research explores the performance efficiency of faculties at a Malaysian university using
9 data envelopment analysis. The method applies a multiple of input and output variables
10 approach in assessing performance efficiency, which is an added advantage to other approaches
11 using simple performance ratios. Inputs like number of students, number of academic staff
12 working and budgetary allocations and outputs like number of graduates and number of
13 research articles published have been applied in data envelopment analysis to get the
14 performance efficiency of a faculty in a university. Data analysis reveals that all faculties
15 except for one, was found to be efficient when compared to the composite faculty. This
16 research contributes significantly in evaluating each faculty's performance in relation to a
17 hypothetical composite faculty and ultimately contributes to the overall performance of a
18 university in the education sector.

19

20 **Index terms**— Data Envelopment Analysis, Education, Efficiency, Performance Evaluation.

21 **1 Introduction**

22 ssessment of performance is a crucial component of the management process in any type of organization
23 (Flegg, 2004). Performance measurement is becoming an essential tool for addressing questions of productivity
24 measurement in terms of efficiency, effectiveness and accountability. Meanwhile, Holloway and Mallory (1995)
25 observed that performance is seen as the overall status of an organization in relation to its competitors, or
26 against its own or external standards, and should generally be gauged across a host of measures, namely economy,
27 efficiency and effectiveness. The concept of efficiency refers to the measurement of relationship between inputs and
28 outputs. Hatry (1999) defined efficiency in performance as "the ration of the amount of input (dollar expenditure,
29 personnel time or other physical input) to the amount of product or output produced by the input". In other
30 words, efficiency measures how good an organization or decision making unit (DMU) fully utilizes its resources
31 to produce outputs within a given set of limitations. The efficiency of organizations has been studied by many
32 researchers in different industries, including university departments (Köksal & Nal?aci, 2006).

33 Assessing the performance of an educational system is an important task but difficult to accomplish since
34 it utilizes multiple inputs to produce multiple outputs most of which are challenging to quantify. Despite the
35 difficulties involved, educational system performance assessment could be made and used to set performance
36 targets, to make resource allocation decisions and to improve overall performance ??Soterious et.al, 1998).

37 **2 II.**

38 **3 Literature review**

39 Measuring the efficiency of a DMU is as easy as comparing its outputs to its input. But when multiple inputs
40 and multiple outputs are involved, the measurement of efficiency becomes difficult. The complex nature of the
41 relationships between multiple inputs and multiple outputs involved in the efficiency analysis of DMUs requires

7 B) OBJECTIVE FUNCTION AND EFFICIENCY INDEX

42 sophisticated techniques which can handle large number of variables and constraints. In 1978, Charnes et al.
43 developed data envelopment analysis (DEA) which was first conceived by Farrell in 1957. Data envelopment
44 analysis is a mathematical programming approach that utilizes multiple inputs and multiple outputs to evaluate
45 the relative efficiencies of DMUs within an organisation and to compare each DMU with other DMUs. The
46 relative efficiency is defined as the ratio of multiple weighted outputs to multiple weighted inputs. According to
47 Nunamaker (1985), the principal strength of DEA "lies in its ability to combine multiple inputs and outputs into
48 a single summary measure of efficiency without requiring specification of any priori weights".

49 DEA is an attractive tool for performance evaluation due to its unique characteristics, such as, among others,
50 being able to handle multiple inputs and multiple outputs simultaneously, does not require weights of each
51 factor to be assigned in advance, inputs and outputs can be compared against each other without the need
52 to standardize the data and weights. DEA was originally developed to examine the efficiency of public schools
53 (Charnes et al., 1978) and has since been applied to various sectors. DEA in education studies focused more on
54 university performance in a specific country for the right allocation of resources, to enhance efficiency of resource
55 utilization (Fernando & Cabanda, 2007). In 2010, Agasisti and Perez-Esparrells used DEA model to compare
56 the efficiency of Italian and Spanish state universities. Köksal and Nal?aci studied the relative efficiency of
57 departments in Turkish engineering universities (Köksal and Nal?aci, 2006). Tajnikar and Debevec applied DEA
58 to study technical efficiencies of all secondary schools in UK and estimated models to examine the determinants
59 of efficiency in a particular year and the change of efficiency over the period (Bradley et al, 2001). Other examples
60 of using DEA as an evaluation tool for efficiency university departments are ??omkings and Green (1988), who
61 studied the overall efficiency of British universities; Beasley (1995) compared chemistry and physics departments;
62 Johnes (1995) studied UK economics departments; and Taylor and Harris (2004) compared the relative efficiency
63 of ten South African universities. DEA is most useful in cases where accounting and financial ratios are of little
64 value and when multiple outputs are produced especially when the relationships are not known (Charnes et al,
65 1978).

66 4 III.

67 5 Methodology

68 Data envelopment analysis (DEA), a linear programming model, is used as a non-parametric technique for
69 efficiency measurement. Any decision making unit or a division in an organisation whether it is manufacturing
70 or service provider should perform well not only in finance but also in non financial measures. The basic concept
71 of DEA is to form a line of optimal production by efficient DMUs and to spread all inefficient DMUs below that
72 line, referred to as the 'envelop' (Tajnikar & Debevec, 2008). The performance at par or below average is the
73 real measurement especially in service organisation because the service levels are difficult to quantify and fix a
74 numerical target. Therefore if a DMU in an organisation is to be efficient it should provide service at par of the
75 weighted average of the entire organisation as whole. This weighted average is crucial and it is the composite
76 weighted average of all inputs and outputs of an organisation and named as hypothetical organisation.

77 The aim of this study is to develop a system to measure the efficiency of these faculties and guide the inefficient
78 ones by showing how faculties should improve their teaching and research to be at least the same level as the
79 efficient faculties. There are two different categories of DEA model, input oriented and output oriented. In input
80 oriented models minimizes the usage of input while maintaining the same level of output while in output oriented
81 models, DMUs maximizes the level of output at the same level of input given. It is obvious that the difference
82 between the two models consists of the ability of each faculty to control the quantity of input or output. In this
83 study, output oriented DEA model is found to be more appropriate as the number of faculties is very small, it
84 requires less computational process and it is easier to control inputs than outputs (Thuy Linh Pham, 2011). The
85 efficiency measure of the output oriented model reflects the ability of a faculty to obtain maximum output from
86 a given set of inputs.

87 6 a) Hypothetical Composite Faculty

88 To illustrate the DEA modelling process, a linear program is formulated to determine the relative efficiency of
89 various faculties operate in a private university in Malaysia. Using the linear programming model, a hypothetical
90 composite faculty will be constructed, based on the inputs and outputs for all faculties with the same goals.
91 Three input measures and two output measures of each DMU are considered to generate a hypothetical composite
92 faculty. This composite faculty's parameters are computed by using weights to compute a weighted average of
93 the corresponding inputs of all DMUs of an organisation.

94 7 b) Objective function and Efficiency Index

95 In any optimisation model there will be an objective function which may be maximised or minimised depending
96 upon the nature of variable being studied. If it is about costing, downtime or waiting time, it is to be minimised.
97 If it is profit, quality or output, it is to be maximised. Similarly in DEA model also the objective function is there,
98 normally E will be used to denote the objective function. The E is the efficiency index of the composite faculty.
99 The efficiency index of the composite faculty is be minimised which means to minimize the input resources

100 available to the composite faculty. Naturally the faculties which are efficient will have a score of 1 and the
101 inefficient faculties will have a score of less than 1. E = the fraction of Faculty of Business Administration's input
102 available to the composite faculty.

103 **8 The decision rule is as follows:**

104 The composite faculty requires as much input as the faculty does. There is no evidence that the faculty is
105 inefficient.

106 The composite faculty requires less input to obtain the output achieved by the faculty. The c) Equality
107 Constraint DEA model requires that the sum of all weights equal 1, thus the first constraint is (1) wba -weight
108 applied to inputs and outputs for FBA wit -weight applied to inputs and outputs for FIT wss -weight applied to
109 inputs and outputs for FESS wtm -weight applied to inputs and outputs for FHTM d) Input Constraints

110 The relationship between the inputs of specific and the composite faculty are to be given in the form of
111 constraints for the DEA model to solve. The resources available for the composite faculty should be less than the
112 inputs available for specific faculties. The analogy is to compare each specific faculty to the composite faculty
113 for measuring composite faculty's efficiency by giving the same input given to the specific faculty being tested.
114 If composite faculty's efficiency index is less than 1, it can be concluded that the specific faculty is weak and vice
115 versa. Each input constraint requires an equation to accommodate all faculties' inputs. The general form for the
116 input constraints is as follows:

117 Weighted input of all faculties (Composite Faculty) ? Input of specific faculty being tested For each
118 output measures, the output for the composite faculty is determined by computing a weighted average of the
119 corresponding outputs for all four faculties. Constraints in the linear programming model require all outputs for
120 the composite faculty to be greater than or equal to the outputs of individual faculties involved in this research.
121 If the inputs for the composite unit shown to be less than the inputs of a particular faculty, the composite faculty
122 is said to have the same or more output for less input. In other words, the faculty being evaluated is less efficient
123 than the composite faculty. Since the composite faculty is based on all four faculties, the faculty being evaluated
124 can be judged as relatively inefficient when compared to composite faculty. It is the weighted average faculty of
125 all faculties operating in a university. CF is taken as the bench mark for comparison of each DMU or faculty
126 in an organisation. CF takes the same inputs and outputs of different faculties in a weighted way. This is like
127 testing whether a DMU or a faculty is at par or below the CF. If it is equal to average, the faculty is treated as
128 efficient and vice versa. To complete the formulation, right-hand-side values for each constraint must be given.
129 In DEA approach, these right-hand-side values are of the input and output values of CF will be the same that
130 of the faculty being tested or compared. Therefore the CF will have the same constraints of a faculty which is
131 being tested. For instance, if FBA is to be tested against the CF, FBA constraints will be the constraints of CF.
132 The models are given in the next section.

133 IV.

134 **9 Results and discussion**

135 As per previous studies, the above inputs and outputs of the faculties were chosen. The choice of adequate
136 variables for inputs and outputs is still debated, and no unique solutions were definitively suggested ??Johnes,
137 2004). For inputs, number of students, number of academic staff and budgetary allocation are being considered.
138 As outputs, this research considers number of graduates as a proxy for for research performances. The most
139 recent data is from the year 2009, therefore, data used to apply DEA model for evaluation is from 2009 of each
140 faculty. The following DEA model is designed for the composite and FBA to evaluate the FBA against the CF.
141 The above DEA model comprises four sections. First section gives the efficient index portrayed in the form of
142 E, the objective function, which is to be minimised. Section two gives the total weight constraint. This is an
143 equality constraint which should be always one. Section three gives the output constraints in the form of equal to
144 or greater than. The CF draws the values from the faculty to be tested. There are two outputs namely graduates
145 and number of research articles published. Section four gives the input constraints. The inputs are the number
146 of students studying presently in each faculty, number of academic staff working and budgetary allocation for
147 each faculty. The CF draws the figures from FBA as right hand side values. But since they are placed in the
148 left hand side they appear with minus sign which is appropriate in algebra. The final section is the non-negative
149 constraint. If these constraints are not given while minimising they may appear with negative values which are
150 to be prevented as there is no negative values for these parameter.

151 The result after running the solution for the above model as follows: The efficiency index shows 1 for CF and
152 FBA. This result reveals that both CF and FBA are working on the same level of efficiency. The surplus and
153 slacks are zero. The surplus are the right hand side values when the faculty produces more output than CF and
154 similarly slack variable will show the unutilised resources not used by the particular faculty when compared to
155 CF. Since all slack values are zero it is concluded that FBA uses the same inputs and produces the same outputs
156 as CF. Reduced cost is related to objective function while shadow prices are related to constraints. Reduced costs
157 have no role here as this paper evaluates efficiency only. In case of linear programming the values are useful. The
158 shadow prices give the indication that if the right hand side increases by this quantity the efficiency index will
159 change suitably. For output variable graduates if right hand side increases by 0.001 the efficiency index also will

13 V. CONCLUSION

160 increase. For the input variables if the students studying and academic staff decreases by 0.001 and 0.005 will
161 improve the efficiency index. This shows that the department is over staffed and have more students for every
162 academic staff. This requires some realignment in student and staff strength.

163 10 b) Faculty of Information Technology (FIT)

164 The following DEA model is framed to evaluate efficiency of Faculty of Information Technology's performance.
165 A closer observation will reveal that there is no change in objective and equality weight constraint. But the right
166 hand side values of output constraints have been replaced with that of FIT output values. Similarly the input
167 constraints values are replaced by input values of FIT which are placed below the CF with minus sign. The
168 results for the FIT DEA model are as follows. FIT is also efficient as the composite faculty and FIT having the
169 efficiency index of one. This implies that the CF uses the same inputs from all faculties and produces the same
170 efficiency index as FIT. The slack, reduced costs and the shadow prices all have the same interpretation as in
171 FBA. This paper's concern is whether the FIT is efficient or not, which is very clear that it's performance is as
172 equal to CF.

173 11 c) Faculty of Education and Social Sciences (FESS)

174 The FESS DEA model is as follows. As usual the output constraints right hand side and input values of FESS
175 are substituted in the place of FIT values. The DEA model analysis produces the following results for FESS.
176 FESS also produces an efficiency index of one which indicates that this faculty also as efficient as the other two
177 faculties. The surplus and slack values are nil. The reduced costs and shadow prices have no interpretation in
178 DEA model for this paper. Once CF produces the results it is interpreted as how much output the CF produces
179 with the same inputs given to FESS. Here CF produces the same output as FESS by taking all faculties composite
180 input.

181 12 d) Faculty of Hospitality and Tourism Management

182 The following DEA model is applied for FHTM to assess the efficiency. As usual the input and outputs are
183 adjusted suitability with the values of FHTM. The results are as follows. CF shows that the efficiency index as
184 0.958, which means the composite faculty is able to obtain only an output of 0.958 with the resources available
185 to all faculties. In other words to produce the outputs of FHTM the CF requires only 98.5% of inputs. The
186 FHTM either wastes the resources or it is unable to produce as much output as required for this given level of
187 resources. The composite faculty is more efficient than FHTM and the data envelopment analysis has identified
188 FHTM as relatively inefficient. The academic staff and resources available to it are in surplus by 3.151 and 29,564
189 respectively. These figures suggest either the FHTM should reduce these figures or it should improve the output
190 for these given level of inputs.

191 13 V. Conclusion

192 Universities are an important component of human capital formation in a country. The DEA model takes all
193 DMUs resources and outputs produced as the basis and evaluate the DMUs on individual basis. This DEA model
194 does not take outside variables into account while evaluating the DMUs. It compares within the organisation.
195 This controls the exogenous variables in assessing the efficiencies of DMUs. This DEA model was applied on
196 the data collected from a Malaysian private university on four faculties (DMUs) to assess their efficiency. It is
197 found that out of four faculties, one faculty is not functioning as other faculties. This may be an indication
198 to the top management to realign the faculty or to control the expenditure or to improve the efficiency. The
199 inefficient faculty could learn from the efficient faculties and conduct a self audit and identify the causes of its
200 own inefficiency. More administrative attention may be needed to the unit since it performs poorly. economic: a
201 frontier analysis, European Economics Review, 301-314 11. Johnes, J., ??2004) ^{1 2 3}

¹© 2012 Global Journals Inc. (US)

²© 2012 Global Journals Inc. (US) E, wba, wit, wss, wtm 0

³Global Journal of Management and Business Research Volume XII Issue IX Version I © 2012 Global Journals Inc. (US)

Figure 1:

$$\mu_a^* = \begin{cases} 1, & \text{Faculty is efficient} \\ 0, & \text{Faculty is not efficient} \end{cases}$$

Figure 2:

1

	FBA	FIT	FESS	FHTM
Input Measures				
Number of students studying	621	134	421	428
Number of academic staff working	38	16	21	33
Budgetary allocation (in RM)	28,221	14,870	7700	54,260
Output Measures				
Number of graduates	879	135	559	557
Number of research activities	18	9	2	4
a) Faculty of Business Administration (FBA)				

Figure 3: Table 1 :

13 V. CONCLUSION

2

	CF E	FBA	FIT	FESS	FHTM	
Minimise						
Subject to						
Total weights		wba	+ wit	+ wss	+ wtm	= 1
Number of graduates		879wba	+ 135wit	+ 559wss	+ 557wtm	? 879
Number of research activities		18wba	+ 9wit	+ 2wss	+ 4wtm	? 18
Number of students	- 621E	+ 621wba	+ 134wit	+ 421wss	+ 428wtm	? 0
Number of academic staff	-38E 38wba	+ 38wba	+ 16wit	+ 21wss	+ 33wtm	? 0
Budgetary allocation	- 28,221E					

[Note: + 28,221wba + 14,870wit + 7700wss + 54,260wtm ? 0]

Figure 4: Table 2 :

3

	Efficiency Index	Surplus or Slack	Reduced Cost Shadow prices	Allowable Increase	Allowable Decrease
Composite faculty	1	1	0	0	1
FBA	1	1	0	0.035	0
FIT	0.000	0	0	0.046	0
FESS	0.000	0	0	0	0.029
FHTM	0	0	0	0	0.060
Weights	1	0	0.101	0	0
Graduates	879	0	0.001	0	0
Research activities	18	0	0	0	1E+30
Students studying	0.000	0	-0.001	0	0
Academic staff	0.000	0	-0.005	0	0
Budgetary allocation	0.000	0	0	0	0

Figure 5: Table 3 :

4

	CF E	FBA	FIT	FESS	FHTM	
Minimise						
Subject to						
Total weights		wba	+ wit	+ wss	+ wtm	= 1
Number of graduates		879wba	+ 135wit	+ 559wss	+	?
					557wtm	135
Number of research activities		18wba	+ 9wit	+ 2wss	+ 4wtm	? 9
Number of students	-	+	+ 134wit	+ 421wss	+	? 0
	134E	621wba			428wtm	
Number of academic staff	-	+ 38wba	+ 16wit	+ 21wss	+	? 0
	16E				33wtm	
Budgetary allocation	-	+	+	+ 7700wss + 54,260wtm		? 0
	14,870E8,221wba	14,870wit				

Figure 6: Table 4 :

5

	Efficiency	Surplus	Reduced Cost	Allowable	Allowable
	Index	or Slack	Shadow prices	Increase	Decrease
Composite faculty	1	1	0	1E+30	1
FBA		0.000 0	0	1E+30	3.634
FIT	1	1	0	2.708	1E+30
FESS	0	0	4.968	1E+30	4.968
FHTM	0	0	4.213	1E+30	4.213
Weights	1	0	-2.634	0	0.500
Graduates	135	0	0	0	1E+30
Research activities	9	0	0.404	9	0
Students studying	0.000	0	-0.007	0	1E+30
Academic staff	0.000	0	0	1E+30	0
Resources available	0.000	0	0	1E+30	0

Figure 7: Table 5 :

13 V. CONCLUSION

6

	CF E	FBA	FIT	FESS	FHTM
Minimise					
Subject to					
Total weights		wba	+ wit	+ wss	+ wtm = 1
Number of graduates		879wba	+ 135wit	+ 559wss	+ 557wtm 559?
Number of research activities		18wba	+ 9wit	+ 2wss	+ 4wtm ? 2
Number of students	-421E	+ 621wba	134wit	421wss	+ 428wtm ? 0
Number of academic staff	-21E	+ 38wba	+ 16wit	+ 21wss	+ 33wtm ? 0
Budgetary allocation		$-7,700E + 28,221wba + 14,870wit + 7700wss + 54,260wtm ? 0$			

Figure 8: Table 6 :

7

	Efficiency Surplus		Reduced Cost	Allowable Increase	Allowable Decrease
	Index	or Slack	Shadow prices		
Composite faculty	1	1	0	1E+30	1
FBA	0	0	0.537	1E+30	0.537
FIT		0.000 0	0	0.235	0.931
FESS	1	1	0	0.931	0.417
FHTM	0	0	5.781	1E+30	5.781
Weights	1	0	0.734	0	0
Graduates	559	0	0	0	1E+30
Research activities	2	0	0.133	0	0
Students studying	0.000	0	0	1E+30	0
Academic staff	0.000	0	0	1E+30	0
Resources available	0.000	0	0.000	0	1E+30

Figure 9: Table 7 :

	CF E	FBA	FIT	FESS	FHTM	
Minimise						
Subject to						
Total weights		wba	+ wit	+ wss	+ wtm	= 1
Number of graduates		879wba	+ 135wit	559wss	557wtm	557
Number of research activities		18wba	+ 9wit	+ 2wss	+ 4wtm	? 4
Number of students	-428E	+ 621wba	134wit	421wss	428wtm	? 0
Number of academic staff	-33E	+ 38wba	+ 16wit	+ 21wss	+ 33wtm	? 0
Budgetary allocation						-54,260E + 28,221wba + 14,870wit + 7700wss + 54,260wtm ? 0

Figure 10: Table 8 :

	Efficiency Index	Surplus or Slack	Reduced Cost Shadow prices	Allowable Increase	Allowable Decrease
Composite faculty	0.958	0.958	0	1E+30	1
FBA	0.567	0.567	0	0.039	1.138
FIT	0.433	0.433	0	0.051	1E+30
FESS	0	0	0.022	1E+30	0.022
FHTM	0	0	0.042	1E+30	0.042
Weights	1	0	0.107	0.371	0.366
Graduates	557	0	0.002	322	150.784
Research activities	14.105	10.105	0	10.105	1E+30
Students studying	0.000	0	-0.002	40.871	1E+30
Academic staff	-3.151	3.151	0	1E+30	3.151
Resources available	-29564	29564	0	1E+30	29564

Figure 11: Table 9 :

Figure 12:

202 The University under consideration has four faculties, Faculty of Business Administration (FBA), Faculty of
203 Information Technology (FIT), Faculty of Education and Social Science (FESS) and Faculty of Hospitality and
204 Tourism Management (FHTM).

205 teaching performance (production of human capital) and the number of research articles published as proxy
206 [Tomkins and Green ()] 'An experiment in the use of DEA for evaluating the efficiency of UK university
207 departments of accounting'. G Tomkins , R Green . *Financial Accountability Management* 1998. p. .

208 [Agasisti and P?rez-Esparrells ()] *Comparing efficiency in a cross-country perspective: the case of Italian and*
209 *Spanish state universities*, T Agasisti , C P?rez-Esparrells . 2010. p. .

210 [Beasley ()] 'Comparing university departments'. J Beasley . *Omega International Journal of Management Science*
211 1995. p. .

212 [Efficiency and productivity of hospitals in Vietnam Journal of Health Organization and Management ()]
213 'Efficiency and productivity of hospitals in Vietnam'. *Journal of Health Organization and Management* 2011.
214 p. . (Thuy Linh Pham.)

215 [Tajnikar and Debevec ()] *Funding system of fulltime higher education & technical efficiency: case of the*, M
216 Tajnikar , J Debevec . 2008. p. . University of Ljubljana. Education Economics

217 [Fernando and Cabanda ()] 'Measuring efficiency and productive performance of colleges at the University of
218 Santo Tomas: a nonparametric approach'. B I S Fernando , E C Cabanda . *International Transactions in*
219 *Operational Research* 2007. p. .

220 [Flegg et al. ()] 'Measuring the efficiency of British universities: a multi-period data envelopment analysis'. A T
221 Flegg , D O Allen , K Field , T W Thurlow . *Education Economics* 2004. p. .

222 [Charnes et al. ()] 'Measuring the efficiency of decision making units'. A Charnes , W W Cooper , E Rhodes .
223 *European Journal of Operational Research* 1978. p. .

224 [Holloway et al. ()] *Performance measurement and evaluation*, J Holloway , J Lewis , G Mallory . 1995. London:
225 Sage Publications.

226 [Hatrty ()] *Performance measurement: getting results*, H Hatrty . 1999. Washington D.C: Urban Institute Press.

227 [Chang and Chen ()] 'Performance ranking of Asian lead frame firms: a slack-based method in data envelopment
228 analysis'. S Y Chang , T H Chen . *International Journal of Production Research* 2008. p. .

229 [Taylor and Harris ()] *Relative efficiency among South African universities: a data envelopment analysis*. *Higher*
230 *Education*, B Taylor , G Harris . 2004. p. .

231 [Johnes and Johnes ()] *Research funding and performance in UK university departments of*, J Johnes , G Johnes
232 . 1995.

233 [Bradley et al. ()] 'The effect of completion on the efficiency of secondary schools in England'. S Bradley , G
234 Johnes , J Millington . *European Journal of Operational Research* 2001. p. .

235 [Köksal and Nal?aci ()] *The relative efficiency of departments at a Turkish engineering college: a data*
236 *envelopment analysis*, G Köksal , B Nal?aci . 2006. 51 p. .

237 [Nunamaker ()] 'Using data envelopment analysis to measure the efficiency of non-profit organizations: a critical
238 evaluation'. T R Nunamaker . *Managerial and Decision Economics* 1985. p. .

239 [Soteriou et al. ()] 'Using DEA to evaluate the efficiency of secondary schools: the case of Cyprus'. A C Soteriou
240 , E Karahanna , C Papanastasiou , M S Diakourakis . *International Journal of Educational Management*
241 1998. p. .