

International Reserve Holdings in ASEAN5 Economies

Dr. Eliza Nora¹, M. Azalib² and Siong-Hook Law³

¹ Universiti Sains Malaysia

Received: 11 October 2011 Accepted: 2 November 2011 Published: 13 November 2011

5

Abstract

This paper examines international reserve holdings in five ASEAN economies during the period of 1970-2005 using the autoregressive distributed lag (ARDL) bounds testing approach proposed by Pesaran, Shin, and Smith (2001). These countries had increased their international reserve holdings after the 1997 Asian financial crisis. The majority of these countries had also experienced consistent current account surplus during the same period. Thus, the present study attempts to investigate the existence of long run relationship between reserve holdings and the current account. The empirical results indicate that current account surplus leads to the rise in international reserve holdings in Indonesia, Malaysia, and Singapore.

16

Index terms— International Reserves, ASEAN5 Economies, ARDL Model

1 INTRODUCTION

After the Asian financial crisis in 1997-1998, the five ASEAN countries, namely Indonesia, Malaysia, the Philippines, Singapore, and Thailand, had increased their holdings of international reserves. International reserves holdings in ASEAN5 economies had been increasing since in the early 1990s but a sharp rise was observed after the crisis. Among the ASEAN5, Singapore showed the highest international reserve holdings both in terms of US dollars and when reserves are scaled to GDP. This is followed by Malaysia. In 2005, Singapore's international reserves stood at US\$116 billion (104% of GDP) while the international reserves of Malaysia were recorded at US\$70 billion (63% of GDP). In Indonesia, international reserve holdings increased by more than 100% after the crisis from US\$17 billion (9% of GDP) in 1997 to US\$35 billion (18% of GDP) in 2003 and 2004. The Philippines showed the lowest reserves in terms of US dollars (US\$16 billion). International reserves of Thailand rose from US\$29 billion in 1998 to US\$51 billion in 2005, an increase by 76% in seven years.

Besides the high international reserve holdings, these countries also experienced consistent current account surplus (with some exception in the cases of the Philippines and Thailand) at least until 2005. The rise in international reserve holdings during the period with current account surplus is associated with the problem of savings-investment imbalance in the region since countries with current account surplus have higher savings than investment. The savings-investment gap had widened, especially in Malaysia and Singapore, reflecting the rise in their current account surplus in recent years.

Based on the above discussion, it can be inferred that high international reserve holdings in the ASEAN5 economies coincided with the period with current account surplus. An interesting question that this study attempts to answer is whether current account surplus leads to the rise in international reserve holdings in these countries. Therefore, the main objective of the present study is to empirically analyze the impact of current account imbalance on international reserve holdings in the ASEAN5 economies.

This study differs from the previous studies in two aspects. First, the study utilizes the autoregressive distributed lag (ARDL) bounds testing approach to cointegration to analyze the behavior of international reserve holdings. This methodology has not been widely applied in this area of research. Previous studies on international reserve holdings for individual countries usually employ the Ordinary Least Square (OLS) and the cointegration techniques developed by Engle and Granger (1987), Johansen (1988), and Johansen and Juselius (1990). One

3 REVIEW OF EMPIRICAL LITERATURE

45 of the advantages of the ARDL approach to cointegration over previous cointegration techniques is that the
46 former can be applied to studies with small sample sizes (Mah 2000).

47 Second, most studies on international reserve holdings for developed and developing countries are based on
48 cross-country or panel data analysis. Only a few studies are conducted for individual countries. Even though there
49 are studies that analyze the behavior of international reserve holdings for individual Asian countries, for instance,
50 China (Huang, 1995; ??ei and Zhu, 2000), India (Ramachandran, 2004(Ramachandran, , 2006;);Ramachandran
51 and Srinivasan, 2007;Prabheesh, Malathy, and Madhumati, 2008), Korea (Aizenman, Lee, and Rhee, 2007;Jo,
52 2007;Ra, 2007), Pakistan (Khan and Ahmed, 2005), and Taiwan (Huang and Shen, 1999), there is still a limited
53 number of studies on international reserve holdings for individual ASEAN The remainder of this paper is organized
54 as follows. Section II reviews recent empirical literature on international reserve holdings. Section III summarizes
55 the data and methodology to be employed in this study. The major findings are presented in Section IV. The
56 final section concludes the paper.

57 2 II.

58 3 REVIEW OF EMPIRICAL LITERATURE

59 This section provides a review of some empirical literature on international reserve holdings for individual
60 countries. There has been an increasing number of studies using time series data since in the 1990s. Individual-
61 country studies have addressed the following issues associated with international reserve holdings: (1) the
62 transactions, precautionary, and mercantilist motives for holding reserves; (2) monetary disequilibrium and
63 reserve holdings; (3) the opportunity cost of holding reserves; (4) the role of reserves as a buffer stock.

64 For instance, Elbadawi (1990) estimates the model of international reserve holdings for Sudan during 1971-
65 1982 and he discovers that international reserve holdings in Sudan exhibits constant return to scale and the
66 variability measure is positive and significant, reflecting the precautionary motive for holding reserves. A study
67 by Prabheesh, Malathy and Madhumati (2008) for India during 1983-2005 also supports the precautionary motive
68 for holding reserves against the current account and capital account vulnerabilities. Studies by Karfakis (1997) on
69 Greece (during 1976-1992) and ??ei and Zhu (2000) on China (during January 1994 to December 1998) suggest
70 that the international reserve holdings in these countries serve the role in the balance of payments adjustment
71 process. These findings also support the precautionary motive for holding reserves. Applying the seasonal error
72 correction model, Huang and Shen (1999) analyze the behavior of international reserve holdings in Taiwan during
73 1961Q1-1995Q2. Their findings suggest that precautionary motive is not an important determinant of reserve
74 holdings in Taiwan.

75 Using quarterly data for the period 1985Q1-1997Q4, Badinger (2004) finds strong economies of scale for holding
76 reserves in Austria and he concludes that the transactions motive represents the foreign exchange demand by the
77 private sector.

78 Aizenman, Rhee, and Lee (2007) analyze the precautionary motive for holding reserves for Korea during 1994-
79 2003 by including variables such as short term external debt and foreign portfolio holdings. The empirical results
80 suggest that the Korean holding of international reserves after the 1997 financial crisis supports the precautionary
81 motive for holding reserves. In contrary, Jo (2007) finds that the Korean holding of international reserves during
82 the period after the crisis is to maintain export competitiveness which supports the mercantilist motive for holding
83 reserves.

84 Besides the precautionary and mercantilist motives, opportunity cost also affects international reserve holdings
85 in Korea. For instance, Ra (2007) applies the dynamic ordinary least square (DOLS) and Johansen and Juselius
86 (1990) cointegration approach to estimate reserve model for Korea during 1990-2005 and he concludes that the
87 opportunity cost for holding reserves is inversely related to international reserve holdings during the pre-crisis
88 and the whole sample period.

89 Some studies on international reserve holdings test the theory of monetarist approach to balance of payments
90 by including monetary disequilibrium as an added regressor in reserve equation. For instance, Ford and Huang
91 (1994) examine international reserve holdings in China during 1952-1991 and their empirical results suggest
92 that domestic monetary disequilibrium significantly affects reserve holdings and the monetary authority takes
93 appropriate action to restore reserves to their desired level. Monetary disequilibrium also significantly affects
94 international reserve holdings in Pakistan during 1982Q1-2003Q2 (Khan and Ahmed, 2005).

95 Following Frenkel and Jovanovic (1981), Cifarelli and Paladino (2006) estimate the model of international
96 reserve holdings based on the buffer stock model using the Johansen cointegration approach for ten Asian and
97 Latin American emerging economies. Their empirical results suggest that high international reserve holdings in
98 these countries is associated with the "fear of floating" and mercantilist motive. Similarly, Ramachandran and
99 Srinivaran (2007) and Ramachandran (2004(Ramachandran (, 2006)) utilize the buffer stock model to analyze
100 the behavior of international reserve holdings for India and they discover that this model predicts well the reserve
101 model for India.

102 **4 III.**

103 **5 DATA, EMPIRICAL MODEL, AND METHODOLOGICAL**
104 **ISSUES a) Data**

105 This study utilizes annual data covering the period of 1970-2005. Reserves, current account balance, and total
106 external debt are scaled by GDP. This is to allow comparison across different sizes of economy ??Cheung and
107 Xing, 2007). Following Edison (2003), export volatility is measured by standard deviation of real export receipts.
108 Data on international reserves (excluding gold), real GDP per capita, imports, exports, and current account
109 balance are obtained from the International Financial Statistics (IMF, 2007) and data on total external debt are
110 collected from World Development Indicators (World Bank, 2007) and Key Indicators of Developing Asian and
111 Pacific Countries (ADB, various issues).

112 **6 Global Journal of Management and Business Research Vol-**
113 **ume XI Issue Version I b) Empirical Model of International**
114 **Reserve Holdings**

115 Following Frenkel (1974a), international reserve holdings is a function of a scale variable, propensity to import,
116 and the variability measure. The scale variable is expected to have a direct relationship with international reserve
117 holdings since it is expected that the international reserve holdings should increase with a rise in the volume
118 of international transactions. Marginal propensity to import can have a positive or negative relationship with
119 reserve holdings. A positive relationship indicates that propensity to import acts as a proxy for the openness of
120 an economy (Frenkel, 1974b) while a negative relationship indicates that the variable becomes a proxy for the
121 marginal cost of adjustment (Huang, 1995).

122 Besides these three explanatory variables, two additional variables are included in the model: current account
123 balance and total external debt. The relationship between international reserves and current account balance is
124 based on the theories presented by Dunn and Mutti (2000), McCauley (2003), and Taniuchi (2006). It has been
125 argued that emerging economies accumulate reserves during the period with current account surplus through
126 foreign exchange market intervention to avoid serious appreciation of their currencies. Specifically, the monetary
127 authorities purchase foreign currencies and sell domestic currency to maintain stable exchange rates. This action
128 would help these countries to retain their export competitiveness. On the other hand, when the current account
129 is in deficit, central banks would sell foreign currencies (purchase domestic currency). This would result in the
130 decline in international reserve holdings.

131 The inclusion of total external debt in the model is in line with the theories developed by Aizenman, Rhee,
132 and Lee (2004) and Alfaro and Kanczuk (2007). Aizenman and Marion (2004) argue that countries with high
133 cost of tax collections and sovereign risk tend to hold reserves and borrow externally. When output is not stable,
134 external debt can be used to ease consumption. Under the event of default on external debt and thus, no access
135 to external borrowing, international reserves can be used to ease consumption, provided that creditors have no
136 access to country's international reserves.

137 Aizenman et al. (??004) extends the model on international reserve holdings suggested by Aizenman and
138 Marion (2004) by taking into account the effect of abrupt short term capital reversals that reduces output and
139 leads to financial crisis. International reserves may reduce the impact of crisis and thus improving welfare. The
140 model accounts for the impact of the failure of a country to make external debt repayments on output. Reduction
141 in output, in turn, could increase the probability of recession.

142 Alfaro and Kanczuk (2007) develop a stochastic equilibrium model of international reserve holdings based on
143 the framework proposed by Eaton and Gersowitz (1980), Arellano (2006), and Aguiar and Gopinath ??2006).
144 They incorporate the decision to hold both reserves and debt in their model. They argue that both reserves and
145 debt can be used to smooth consumption, even though after the country has defaulted.

146 The relationship between international reserves and external debt can be positive or negative. If the
147 relationship is positive, the latter is a complement for the former. Otherwise, the latter becomes a substitute for
148 the former (Eaton and Gersowitz, 1980).

149 Based on the theories presented above, the proposed model of international reserve holdings for ASEAN5
150 economies is developed as follows: $\ln R_t = \ln YCAP_t + \ln PIM_t + \ln XVOL_t + \ln CA_t + \ln DEBT_t$

152 Where $\ln R$ is the ratio of international reserves to GDP; $\ln YCAP$ is the real GDP per capita (scale variable);
153 $\ln PIM$ is the average propensity to import (imports/GDP); $\ln XVOL$ is the variability in real export receipts;
154 $\ln CA$ is the ratio of current account balance to GDP; and $\ln DEBT$ is the ratio of total external debt to GDP.
155 All variables are expressed in logarithms.

156 **7 c) Methodology**

157 In this study, the following procedures were used. Firstly, stationary tests were performed to identify the order
158 of integration of the variables. These is done since the ARDL bounds test requires that the dependent variable
159 to be I(1) and the independent variables to be either I(0) or I (1). The following stationary tests were carried

160 out: the Augmented Dickey-Fuller (ADF) test (Dickey and Fuller 1979) and KPSS test (Kwiatkowski, Phillips, Schmidt, and Shin, 1992).

162 Secondly, the ARDL bounds test developed by Pesaran, Shin, and Smith (2001) was applied to investigate the
163 existence of cointegration relationship between international reserve holdings and its determinants. Following
164 Pesaran et al. (2001), the vector auto-regression (VAR) of order p of international reserve holdings in the
165 ASEAN5 economies is developed as follows:

$$t p i i t i t x w ? ? + + = ? = ? 1 \quad (2)$$

166 Where w_t is the vector of dependent variable (the ratio of international reserves to GDP) and x_t is the
167 vector consisting of both the dependent variable and independent variables (real GDP per capita, propensity to
168 import, export volatility, the ratio of current account balance to GDP, and the ratio of total external debt to (1)
169 11 GDP). $?$ is a constant term, $?$ is the vector of parameters of lag i , t is time or trend term, and $?$ is the vector
170 of error terms.

171 The error correction model of the ARDL model can be expressed as:

$$1 2 1 1 1 0 ? ? + + = ? t t t z w w ? ? ? ? t p i i t i i t i z w ? ? + ? + ? + ? = ? = ? 0 1 \quad (3)$$

172 The third and the fourth expressions containing $?$ s on the right-hand side correspond to the long run
173 relationship. The remaining expressions with the summation sign represent the short-run dynamics of the model,
174 where $?$ is the first difference operator. We develop the Unrestricted Error Correction model based on the
175 assumptions made by Pesaran et al. (2001) in Case III, that is, unrestricted intercepts and no trends. In this
176 case, it is assumed that $0 0$ and $1 = 0$.

177 Thus, the unrestricted error correction model (UECM) based on equation (??) is developed as follows:

$$\ln = ? t R 1 2 1 1 0 \ln \ln ? ? + + t t YCAP R ? ? ? 1 3 \ln ? + t PIM ? 1 4 \ln ? + t XVOL ? 1 5 \ln ? + t CA ? 1 6 \ln ? + t DEBT ? ? = ? ? + a k k t k R 1 , 1 \ln ? ? = ? ? + b k k t k YCAP 0 , 2 \ln ? ? = ? ? + c k k t k PIM 0 , 3 \ln ? ? = ? ? + d k k t k XVOL 0 , 4 \ln ? ? = ? ? + e k k t k CA 0 , 5 \ln ? ? = ? ? + e k k t k DEBT 0 , 6 \ln ? t ? +$$

178 The long run elasticities are calculated by dividing the coefficient of the first lag of the independent variable by
179 the coefficient of the first lag of the dependent variable (Bardsen, 1989). There are three steps in the ARDL bounds
180 test. First, equation (??) is estimated using Ordinary Least Square (OLS). Second, Wald tests are conducted to
181 test for the existence of long run relationship between international reserve holdings and its determinants. This
182 test is performed by imposing restrictions on the long run coefficients of $\ln R$, $\ln YCAP$, $\ln PIM$, $\ln XVOL$, $\ln CA$,
183 and $\ln DEBT$. The null and alternative hypotheses for equation (2) are constructed as follows:

184 $H_0 : ? 1 = ? 2 = ? 3 = ? 4 = ? 5 = ? 6 = 0$ (There is no long run level relationship) $H_1 : ? 1 ?? 2 ?? 3 ?? 4 ?? 5 ?? 6 ? 0$ (There is long run level relationship)

185 The computed F-statistic from the Wald test is compared with the critical values from Pesaran et al. (2001)
186 and Narayan (2005). The lower critical value assumes that the regressors are integrated of order zero or $I(0)$ while
187 the upper critical value assumes that the regressors are integrated of order one or $I(1)$. If the calculated F-statistic
188 from the Wald test is greater than the upper critical value, the null hypothesis of no long run relationship will be
189 rejected. If the calculated statistic is less than the lower critical value, the null hypothesis will not be rejected.
190 If the calculated value falls within the upper and lower critical values, the result of the test is inconclusive. The
191 selection of model is based on the Hendry's (1991) general to specific approach.

192 IV.

193 8 DISCUSSION OF FINDINGS a) Stationary Test Results

194 The results of the ADF and KPSS tests both with and without trend are presented in Table 1. The lag lengths
195 for the ADF and KPSS tests are selected using the Aikake Information Criteria (AIC) and the Newey-West
196 bandwidth, respectively. The results of the tests indicate that the dependent variables ($\ln R$) at level are non-
197 stationary. When the tests are performed at first difference, $\ln R$ of each country is found to be stationary. On
198 the other hand, some of the independent variables are found to be stationary at level ($I(0)$) while some of them are
199 stationary at first difference ($I(1)$). In short, the dependent variable ($\ln R$) is $I(1)$ while the dependent variables
200 are either $I(0)$ or $I(??)$.

201 (4) 1.

202 ADF = augmented Dickey-Fuller; KPSS = Kwiatkowski, Phillips, Schmidt, and Shin 2.

203 Critical values for ADF and KPSS tests are taken from MacKinnon (1991) and Kwiatkowski, Phillips,
204 Schmidt, and Shin (1992), respectively.

205 9 3.

206 The null hypothesis for ADF test is that the series is non-stationary while the null hypothesis for
207 the KPSS test is that the series is stationary. 4. $\ln R$ = ratio of international reserves to GDP, logged; $\ln YC$ =
208 real GDP per capita, logged; $\ln PIM$ = average propensity to import (imports/GDP), logged; $\ln XPV$ =
209 volatility of real export receipts, logged; $\ln CA$ = ratio of current account balance to GDP, logged; $\ln EXTD$ =
210 ratio of total external debt to GDP, logged.

211 10 5.

212 Figures in parentheses are the lag lengths. ***, **, and * indicate significant at 1%, 5%, and 10% level respectively.

219 11 b) ARDL Bounds Test Results

220 Table 2 presents the results of the UECM for the long run coefficients based on equation (2). The goodness of
221 fit of the models (adjusted R-squared) and the standard error of regression remain superior in all models. The
222 short run coefficients of the UECM results are presented in Table 3 Table 4 summarizes the results of the ARDL
223 bounds tests based on equation (??). The calculated Fstatistics for all five countries are greater than the upper
224 critical values at least at 5% and 10% levels of significance based on Pesaran et al. (2001) and Narayan (2005),
225 respectively. Therefore the null hypothesis of no cointegration can be rejected for all cases and we conclude that
226 there is a long run level relationship between international reserve holdings and its determinants for Indonesia,
227 Malaysia, the Philippines, Singapore, and Thailand.

228 The long run elasticities calculated based on equation (??) are presented in Table 5. GDP per capita
229 (lnYCAP) is significant and positive in the cases of Indonesia and Thailand. The positive relationship indicates
230 that international reserve holdings rise with the rise in the volume of international transactions.

231 Propensity to import (lnPIM) is significant in affecting reserve holdings in all sample countries except in the
232 case of Indonesia. The coefficient sign is positive for Malaysia and the Philippines but negative in the cases of
233 Singapore and Thailand. Therefore, lnPIM represents the openness of the economy for the first two countries
234 and the variable acts as a marginal cost of adjustment for the last two countries.

235 The relationship between export volatility and international reserve holdings is positive and significant only in
236 the case of Indonesia. This implies that international Diagnostic tests such as Breusch-Godfrey serial correlation
237 test, ARCH test, Ramsey RESET specification test, Jacque-Bera normality test, and stability tests (CUSUM
238 and CUSUM of Square tests) are performed to test for the adequacy of the models. All models have passed these
239 tests. The results of diagnostic tests are summarized in the lower panel of Table 2 and in the Appendix.

240 Cointegration can be rejected for all cases and we conclude that there is a long run level relationship between
241 international reserve holdings and its determinants for Indonesia, Malaysia, the Philippines, Singapore, and
242 Thailand.

243 Reserve holdings rise with an increase in the volatility of export receipts in this country. 1. lnR = r atio
244 o f international r eserves t o GDP, l ogged; lnYCAP = real G DP p er cap ita, logged; lnPIM = average
245 propensity to import (imports/GDP), logged; lnXVOL = volatility of real export receipts, logged; lnCA = ratio
246 of current account balance to GDP, logged; and lnDEBT = ratio of total external debt to GDP, logged. Current
247 account balance shows a significant positive impact on international reserve holdings in Indonesia, Malaysia,
248 and Singapore. The positive relationship implies that a rise in the current account surplus leads to a rise in
249 international reserve holdings in these countries. The impact of current account balance on international reserve
250 holdings is highest in Indonesia followed by Singapore and Malaysia. A 1% increase in the current account surplus
251 would result in the rise in international reserve holdings by 0.56%, 0.54% and 0.27% in Indonesia, Singapore,
252 and Malaysia, respectively. These results are consistent with the fact that these countries were experiencing huge
253 current account surplus in recent years. In the case of the Philippines, the current account recorded deficits since
254 1987 until 2001, except in 1998. The current account of the Philippines shifted to surplus after 2002 and remained
255 in surplus until, at least, to 2005. However, the surplus totaling to only US\$3 billion during 2003-2005. This
256 surplus was relatively small as compared to the surplus in the rest of sample countries. This fact may explain
257 the insignificant impact of current account balance on reserve holdings in the Philippines.

258 12 Figures in parentheses (

259 The insignificance of current account balance in Thailand may be associated with the inverse movement between
260 international reserves and the current account. The ratio of reserves to GDP in Thailand was moving upward
261 (from 26% in 1998 to 30% in 2002-2005) while the ratio of current account balance to GDP was moving downward
262 (from 13% in 1998 to 4% in 2004). Furthermore, the Thailand's current account had shifted to a deficit amounting
263 to US\$7.8 billion in 2005.

264 International reserve holdings would decline with the rise in the total external debt holdings in the Philippines.
265 In other words, total external debt is a substitute for international reserves in this country. A 1% increase in
266 total external debt would lead to the decline in international reserve holdings by 1.2% in the Philippines. Total
267 external debt is not significant in the rest of the countries.

268 Total external debt does not have any significant effect on international reserve holdings in the cases of
269 Indonesia, Malaysia, Singapore, and Thailand. Some possible explanation for such findings can be offered.
270 Indonesia was able to reduce its total external debt burden from US\$151 billion (97% of GDP) in 1998-1999 to
271 an average of US\$136 billion (74% of GDP) during 2001-2004. The reduction is mainly due to the reduction in
272 the long term debt of the private sector from US\$55 billion in 1998 to an average of US\$32 billion in 2001-2004
273 (Asian Development Bank, various issues). The government has taken steps in rescheduling its external debt and
274 also the external debt of the private sector. Under the Paris Club and London Club Agreements, the government
275 was allowed to reschedule its external debt repayments. Besides, the Frankfurt Agreement was signed on the 4th
276 June of 1998 to assist the private sector in resolving its external debt burden (Kusumaningtuti, 2004).

277 In the case of Malaysia, there had been a decline in the private sector's long term external debt from US\$18
278 billion in 2000 to an average of US\$14 billion during 2001 ??ADB 2006)). There are at least two reasons that
279 could explain the insignificance of total external debt in Singapore. First, the Singaporean government has not
280 taken any external financing since 1996. This may be due to the policy of the government to maintain budget

281 surplus. The government budget has been in consistent surplus since 1988 (ADB various issues). Second, even
282 though the levels of external debt have grown in recent years, Singapore is a net creditor in all trade credit
283 transactions, debt securities, FDIRELATED loans, and loans to other non-residents (Kapur, 2005).

284 The short run causality based on equation (??) is presented in Table 6. In the short run, $\ln YCAP$ is significant
285 only in the case of the Philippines while $\ln PIM$ is significant in all sample countries. $\ln XVOL$ is significant in
286 affecting international reserve holdings in the cases of the Philippines and Singapore. $\ln CA$ is significant in all
287 of the ASEAN countries except Thailand while $\ln DEBT$ debt does not show significant impact on international
288 reserve holdings in the short run except in the case of Thailand.

289 13 CONCLUSION

290 This paper examines the behavior of international reserve holdings in the ASEAN5 economies, namely Indonesia,
291 Malaysia, the Philippines, Singapore, and Thailand, during the period of 1970-2005. The ARDL bounds testing
292 approach developed by Pesaran et al. (??001) is utilized to test for the existence of cointegration relationship
293 between international reserve holdings and its determinants (GDP per capita, average propensity to import,
294 export volatility, current account balance/GDP, and total external debt/GDP). The empirical results indicate
295 that there is a long run relationship between international reserve holdings and its determinants in the five
296 ASEAN economies.

297 An important conclusion can be drawn from the empirical findings is that current account balance is significant
298 and positively related to international reserve holdings in Indonesia, Malaysia, and Singapore. In other words,
299 current account surplus leads to the rise in international reserve holdings in these countries.

300 Current account surplus is the excess savings by the private sector. Therefore, it is expected that the private
301 sector will use these savings to finance their investment. However, due to the less developed financial markets in
302 the region, the private sector may have limited ability to transform their savings into investment. As a result, the
303 public sector acts as an intermediary for the private sector to recycle the savings into investment. In particular,
304 the public sector has transformed these savings into investment in foreign currency assets in the form of the build
305 up of international reserves ??Genberg, McCauley, Park, and Persaud, 2005, p. 13).

306 The build up of reserves represents the investment in foreign currency assets, especially the US dollar
307 denominated assets, by central banks. This is because nearly 70% of international reserves are denominated
308 in the US dollars (World Bank, 2005; Genberg et al., 2005, p. 30). These reserves are usually invested in high
309 liquidity and low return assets such as the US treasury bills and bonds (Oh, Park, Park, and Yang, 2003; World
310 Bank 2005). Such investment of reserves represents capital outflows from East Asia to the US. These outflows
311 of savings could be a loss of opportunities to these countries since the returns on reserves may be lower than
312 the returns on alternative investments at home. Therefore part of reserves may be used to finance investment at
313 home such as on health, education, and infrastructure. Such investment may minimize the savings-investment
314 imbalance and promote long term economic growth in these countries.

315 14 APPENDIX

316 15 Stability tests Indonesia

317 Malaysia

318 1 2 3 4 5 6

¹© 2011 Global Journals Inc. (US) © 2011 Global Journals Inc. (US) XII 2011 December International Reserve Holdings in ASEAN5 Economies

²© 2011 Global Journals Inc. (US) XII 2011 December International Reserve Holdings in ASEAN5 Economies

³© 2011 Global Journals Inc. (US) © 2011 Global Journals Inc. (US)

⁴December International Reserve Holdings in ASEAN5 Economies

⁵© 2011 Global Journals Inc. (US) XII

⁶© 2011 Global Journals Inc. (US) © 2011 Global Journals Inc. (US) XII 2011 December International Reserve Holdings in ASEAN5 Economies 2. * outside and inside parenthesis indicate significance levels based on Pesaran et al. (2001) and Narayan (2005), respectively. 3. k and n denote the number of regressors and observations, respectively. ***, **, and * indicate significant at 1%, 5%, and 10% levels, respectively.

Figure 1:

Country	ADF Test		KPSS Test	
	Without Trend	With Trend	Without Trend	With Trend
Indonesia	-2.5894 (0)	-2.7151 (3)	0.7469 (4)***	0.1284 (12)*
?lnR	-7.1632 (0)***	-7.1507 (0)***	0.1186 (3)	0.0692 (3)
lnYCAP	-1.8357 (0)	-1.6083 (1)	0.7003 (5)**	0.1522 (4)**
?lnYCAP	-4.2539 (0)***	-4.4740 (0)***	0.2592 (2)	0.0614 (1)
lnPIM	-2.6035 (0)	-2.4747 (0)	0.5183 (4)**	0.0886 (2)
?lnPIM	-6.2176 (0)***	-6.3073 (0)***	0.1909 (4)	0.0990 (5)
lnXVOL	-2.9575 (3)*	-3.1817 (3)	0.3392 (4)	0.0900 (2)
?lnXVOL	-4.7629 (4)***	-4.6808 (4)***	0.0559 (1)	0.0541 (1)
lnCA	-3.4726 (0)**	-3.6843 (1)**	0.3494 (3)*	0.1265 (2)*
?lnCA	-6.2626 (1)***	-6.1594 (1)***	0.0574 (3)	0.0568 (3)
lnDEBT	-1.5970 (0)	-2.0373 (0)	0.4426 (5)*	0.0954 (4)
?lnDEBT	-5.5772 (0)***	-5.4902 (0)***	0.1002 (0)	0.0994 (0)
Malaysia	-0.8448 (0)	-3.0273 (1)	0.7191 (4)**	0.1494 (3)**
?lnR	-5.4116 (0)***	-4.6284 (3)***	0.3083 (17)	0.0479 (3)
lnYCAP	-1.2830 (0)	-3.9935 (8)**	0.7088 (5)**	0.0760 (4)
?lnYCAP	-4.8785 (0)***	-4.9762 (0)***	0.1450 (2)	0.0573 (1)
lnPIM	-1.1162 (0)	-3.2815 (0)*	0.6672 (5)**	0.0919 (2)
?lnPIM	-6.7491 (0)***	-6.6427 (0)***	0.0741 (3)	0.0742 (3)
lnXVOL	-2.4267 (0)	-4.0789 (0)**	0.7611 (4)*	0.0679 (2)
?lnXVOL	-8.7104 (0)***	-8.7890 (0)***	0.0983 (5)	0.0832 (6)
lnCA	-2.8432 (1)*	-3.1344 (1)	0.2369 (3)	0.1121 (2)
?lnCA	-5.3593 (0)***	-5.3020 (0)***	0.0772 (3)	0.0350 (2)
lnDEBT	-2.8438 (4)*	-5.1456 (1)***	0.4369 (5)*	0.1629 (4)**
?lnDEBT	-4.8104 (1)***	-2.8438 (4)*	0.2899 (9)	0.0646 (5)
Thailand	-2.3289 (7)	-1.6614 (1)	0.3539 (4)*	0.1540 (4)**
Philippines				
?lnR	-4.1801 (1)***	-4.5065 (3)***	0.0874 (2)	0.0888 (2)
lnYCAP	-1.5139 (2)	-2.5819 (1)	0.4908 (4)**	0.1004 (4)
?lnYCAP	-3.5720 (1)**	-3.4970 (1)*	0.1300 (2)	0.1299 (2)*
lnPIM	-0.3981 (1)	-1.7441 (3)	0.6116 (5)**	0.1414 (4)*
?lnPIM	-7.4357 (0)***	-7.3442 (0)**	0.0971 (1)	0.0808 (1)
lnXVOL	-2.3405 (0)	-3.1354 (0)	0.3543 (4)*	0.0605 (3)
?lnXVOL	-6.1865 (1)***	-6.1484 (1)***	0.1421 (2)	0.0714 (3)
lnCA	-2.3576 (0)	-3.5552 (8)*	0.2803 (4)	0.1295 (3)*
?lnCA	-5.6565 (1)***	-5.6648 (1)***	0.3190 (13)	0.0517 (3)
lnDEBT	-1.9695 (1)	-1.7296 (1)	0.4473 (5)*	0.1588 (4)**
?lnDEBT	-3.5720 (0)**	-3.6962 (0)**	0.1982 (1)	0.0722 (1)
Singapore	-1.0722 (0)	-3.0143 (3)	0.6739 (5)**	0.1443 (1)*
?lnR	-6.4146 (0)***	-6.4339 (0)***	0.0568 (3)	0.0483 (3)
lnYCAP	-2.5184 (0)	-2.0608 (0)	0.7117 (5)**	0.1829 (4)**
?lnYCAP	-4.9678 (0)***	-5.4095 (1)***	0.4133 (1)*	0.0563 (3)
lnPIM	-2.2061 (1)	-2.2511 (1)	0.1440 (4)	0.1257 (4)*
?lnPIM	-6.4658 (0)***	-6.3652 (0)***	0.0894 (1)	0.0834 (1)
lnXVOL	-2.0599 (0)	-3.5777 (1)**	0.7238 (4)**	0.0559 (2)
?lnXVOL	-4.3766 (4)***	-4.2830 (4)**	0.1125 (7)	0.0996 (7)
lnCA	-0.8656 (5)	-4.0348 (0)**	0.6985 (4)**	0.1675 (2)**
?lnCA	-9.1313 (0)***	-9.9914 (0)***	0.1986 (2)	0.0900 (4)
lnDEBT	-0.5104 (1)	-3.4085 (8)*	0.6217 (5)**	0.0971 (4)
?lnDEBT	-4.5197 (0)***	-4.4880 (0)***	0.1015 (0)	0.0774 (1)
Thailand	-1.5991 (3)	-3.4756 (5)*	0.4502 (5)**	0.1349 (3)*
?lnR	-3.9509 (0)***	-3.9824 (0)**	0.2009 (4)	0.1023 (4)
lnYCAP	-0.8808 (1)	-3.2503 (7)*	0.6978 (5)**	0.1039 (4)
?lnYCAP	-3.2524 (0)**	-3.2422 (0)*	0.1122 (2)	0.0852 (3)

Figure 3:

2

Variable	Indonesia	Malaysia	Philippines	Singapore	Thailand
	(-2.1898)	(-0.4408)	(-1.4424)	(0.3177)	(-2.0436)
lnR t-1	-1.2229*** (-4.0165)	-0.9573*** (-4.1352)	-1.1027*** (-4.1347)	-0.6052** (-2.5103)	-0.1525* (-1.8436)
lnYCAP t-1	0.9284** (2.4470)	0.1334 (0.3111)	2.1489 (1.3812)	-0.0154 (-0.1076)	0.6830* (1.7939)
lnPIM t-1	0.4991 (1.1606)	0.7429* (1.9218)	1.8541*** (4.7293)	-0.2856** (-2.2295)	-0.7276** (-2.4968)
lnXVOL t-1	0.2357*** (3.0022)	0.0060 (0.0647)	0.1322 (1.2375)	-0.0182 (-0.5969)	0.0049 (0.0996)
lnCA t-1	0.6853*** (3.2721)	0.2614*** (3.9370)	0.0830 (0.4646)	0.3304*** (3.3574)	-0.1170 (-1.6733)
lnDEBT t-1	0.2010 (0.7600)	-0.0775 (-0.6501)	-1.2785*** (-4.3313)	0.0507 (0.9053)	-0.0664 (-0.4091)
Adjusted R 2	0.6255	0.5948	0.6568	0.5940	0.6032
AIC	0.1190	-1.0397	0.2640	-2.7159	-1.5221
Std. error of regression	0.2208	0.1234	0.2374	0.0534	0.0970
F-statistic	4.1436	3.9353	4.6023	4.1215	4.2430
Probability (F)	- 0.0041	0.0046	0.0024	0.0032	0.0027
statistic)					
Diagnostic Tests					
Serial correlation test	1.1752 [0.3395]	2.5919 [0.1102]	0.8293 [0.4543]	0.4653 [0.6367]	2.1512 [0.1509]
ARCH test	0.3353 [0.7179]	0.3188 [0.7296]	1.2901 [0.2911]	0.7360 [0.4881]	0.3770 [0.6894]
Normality test	2.8036 [0.2462]	0.1290 [0.9376]	0.4377 [0.8034]	1.9393 [0.3792]	2.8626 [0.2390]
Ramsey RESET test	1.0885 [0.3145]	2.8330 [0.1130]	1.9510 [0.1745]	0.0513 [0.9502]	0.5078 [0.6118]

Figure 4: Table 2 :

Variable	Indonesia	Malaysia	The Philip-pines	Singapore	Thailand
?lnR t-1	0.2749 (1.1370)	0.4647** (2.4577)	0.2868 (1.0874)		
?lnR t-2	0.2692 (1.4359)		0.1915 (0.9590)	0.4111* (1.8851)	0.2582 (1.4885)
?lnYCAP t			8.4343** (2.6870)		
?lnYCAP t-1			- 6.8786*** (-3.0537)	0.3222 (0.6022)	-0.5912 (-0.6875)
?lnYCAP t-2	1.6767 (0.5617)	0.8387 (0.9892)		0.6555 (1.3310)	-1.0757 (-1.1739)
?lnPIM t		0.3914 (1.6840)	2.8458*** (4.4545)	0.5840** (2.1778)	0.2865 (1.4784)
?lnPIM t-1	-0.6127 (-1.4620)	-0.5043* (-1.7538)		-0.1498 (-0.7252)	0.6609** (2.5833)
?lnPIM t-2	-1.2790*** (-3.0423)		-0.8981 (-1.7067)		
?lnXVOL t	0.0784 (1.0973)	0.1253* (1.9253)	0.0648 (0.6224)		0.0403 (1.0290)
?lnXVOL t-1		0.0517 (0.8245)	-0.2476** (-2.4697)	-0.0646* (-2.0402)	
?lnXVOL t-2		0.0778 (1.2901)			
?lnCA t	0.2956*** (3.1830)	0.1092** (2.1795)	0.3420** (2.6390)	0.4863*** (3.7741)	
?lnCA t-1	-0.4551** (-2.8044)	-0.1020* (-1.7916)		-0.0886* (-2.0426)	0.0955 (1.6974)
?lnCA t-2	-0.2775** (-2.2608)				
?lnDEBT t			-1.0426 (-1.5846)	-0.1097 (-1.2318)	
?lnDEBT t-1	0.3230 (0.9458)	0.3005 (1.3821)	1.3289* (1.9200)		-0.3516 (-1.6553)
?lnDEBT t-2	0.8284 (1.5786)				-0.6572** (-2.0000)

Significance level	Lower Bound (k=5)	Upper Bound	Narayan (2005) Lower Bound (k=5; n=35)
1%	3.41	4.68	4.26
5%	2.62	3.79	3.04
10%	2.26	3.35	2.51
1.			

Figure 6: Table 4 :

	(Dependent Variable: Reserves/GDP (lnR))				
	Indonesia	Malaysia	The Philippines	Singapore	Thailand
lnYCAP	0.7591**	0.1393	1.9488	-	4.4796*
				0.0254	
lnPIM	0.4081	0.7761*	1.6814***	-	4.7719**
				0.4718**	
lnXVOL	0.1928***	0.0062	0.1199	-	0.0322
				0.0301	
lnCA	0.5604***	0.2730*	0.0752	0.5459***	-
					0.7672
lnDEBT	0.1644	-	-	0.0838	-
				0.0810	0.4357
1.1594***					

lnYCAP = real GDP per capita, logged; lnPIM is average propensity to import (imports/GDP), logged; lnXVOL = volatility of real export receipts, logged; lnCA = ratio of current account balance to GDP, logged; and lnDEBT = ratio of total external debt to GDP, logged.

***, **, and * indicate significant at 1%, 5%, and 10% levels, respectively.

Figure 7: Table 5 :

6

Indonesia

Malaysia Singapore Thailand

1. $\ln YCAP$ is real GDP per capita, logged; $\ln PIM$ is average propensity to import (imports/GDP), logged; $\ln X VOL$ is volatility of real export receipts, logged; $\ln CA$ is the ratio of current account balance to GDP, logged; $\ln DEBT$ is the ratio of total external debt to GDP, logged.
2. ? is the first difference operator.
3. Figures in square brackets [] are the p-values.
***, **, and * indicate significant at 1%, 5%, and 10% levels, respectively.

V.

Figure 8: Table 6 :

319 .1 This page is intentionally left blank

320 .2 Global Journal of Management and Business Research Volume XI
321 Issue

322 Version I

323 [Dunn and Mutti ()] , R M Dunn , J H Mutti . *International Economics* 2000. (5th Ed., Routledge)

324 [Wei and Zu ()] ‘?Modeling state foreign exchange reserves under the managed floating exchange rate system in
325 China’. W X Wei , M N Zu . *Journal of Systems Science and Systems Engineering* 2000. 9 p. .

326 [Mah ()] ‘An empirical examination of the disaggregated import demand of Korea -the case of information
327 technology products’. J S Mah . *Journal of Asian Economies* 2000. 11 p. .

328 [Huang and Shen ()] ‘Applying the seasonal error correction model to the demand for international reserves in
329 Taiwan’. T H Huang , C H Shen . *Journal of International Money and Finance* 1999. 18 p. . (International
330 Monetary Fund (IMF) (2007) *International Financial Statistics*)

331 [Edison ()] *Are foreign exchange reserves in Asia too high? Chapter II*, H Edison . 2003. World Economic
332 Outlook; Washington D. C.: International Monetary Fund. p. .

333 [Asian Development Bank (ADB) Key Indicators of Developing Asian and Pacific Countries, Manila, various issues]
334 *Asian Development Bank (ADB) Key Indicators of Developing Asian and Pacific Countries, Manila, various
335 issues,*

336 [Ramachandran and Srinivasan ()] ‘Asymmetric exchange rate intervention and international reserve accumula-
337 tion in India’. M Ramachandran , N Srinivasan . *Economics Letters* 2007. 94 p. .

338 [Badinger ()] *Austria’s demand for international reserves and monetary disequilibrium: the case of a small open
339 economy with a fixed exchange rate regime*’ *Economica*, H Badinger . 2004. 1 p. .

340 [Pesaran et al. ()] ‘Bounds testing approach to the analysis of level relationships’. M H Pesaran , Y Shin , R J
341 Smith . *Journal of Applied Econometrics* 2001. 16 p. .

342 [Kapur ()] ‘Capital flows and exchange rate volatility: Singapore’s experience’, NBER Working Paper 11369’. B
343 K Kapur . *National Bureau of Economic Research* 2005.

344 [Mccaulley (2003)] ‘Capital flows to East Asia since 1997 crisis’. R N Mccaulley . *BIS Quarterly Review* 2003.
345 June 2003. p. .

346 [Engle and Granger ()] ‘Cointegration and error correction: representation, estimation, and testing’. R E Engle
347 , C W J Granger . *Econometrica* 1987. 55 p. .

348 [Kusumaningtuti ()] *Country experience of Indonesia on external debt management*, *Regional Workshop on
349 Capacity Building for External Debt Management in the Era of Rapid Globalization*, S S Kusumaningtuti .
350 2004. Bangkok.

351 [Arellano ()] *Default risk and income fluctuations in emerging markets*, C Arellano . 2006. University of Minnesota
352 Working Paper

353 [Aguiara and Gopinath ()] ‘Defaultable debt, interest rates and the current account’. M Aguiara , G Gopinath .
354 *Journal of International Economics* 2006. 69 p. .

355 [Prabheesh et al. ()] ‘Demand for foreign exchange reserves in india: a cointegration approach’. K P Prabheesh
356 , D Malathy , R Madhumati . *South Asian Journal of Management* 2008. 14 p. .

357 [Ra ()] ‘Demand for international reserves: a case study of Korea’. H R Ra . *Journal of the Korean Economy*
358 2007. 8 p. .

359 [Dickey and Fuller ()] ‘Distribution of the estimates for autoregressive time series with a unit root’. D Dickey ,
360 W A Fuller . *Journal of the American Statistical Association* 1979. 74 p. .

361 [Bardsen ()] ‘Estimation of long-run coefficients in error correction models’. G Bardsen . *Oxford Bulletin of
362 Economics and Statistics* 1989. 51 p. .

363 [Bank ()] *Global Development Finance: Managing Finance and Managing Vulnerability*, World Bank . <http://econ.worldbank.org/WBSITE/EXTERNAL/EXTDECPROSPECTS/EXTGDF/EXTGDF2005> 2005. Washington,D.C..

366 [Cheung and Qian ()] *Hoarding of international reserves: Mrs Machlup’s wardrobe and the Joneses*’, *CESifo
367 Working Paper No. 2065*, Y W Cheung , X A Qian . 2007. Munich, Germany. Center for Economic Studies

368 [Oh et al. ()] *How to mobilize the Asian savings within the region: securitization and credit enhancement for the
369 development of East Asia’s bond market*, G Oh , D Park , J Park , D Y Yang . 03-02. 2003. Korea. Korea
370 Institute for International Economic Policy (KIEP Working Paper)

371 [Aizenman and Marion ()] ‘International reserve holdings with sovereign risk and costly tax collection’. J
372 Aizenman , N Marion . *Economic Journal* 2004. 114 p. .

373 [Aizenman et al. ()] *International reserve management and capital mobility in a volatile world: policy consider-*
374 *ations and a case study of Korea*, J Aizenman , Lee , Y Rhee . 2004. (NBER Working Paper 10534)

375 [Aizenman et al. ()] 'International reserve management and capital mobility in a volatile world: policy consid-
376 erations and a case study of Korea'. J Aizenman , Lee , Y Rhee . *Journal of the Japanese and International*
377 *Economies* 2007. 21 p. .

378 [Taniuchi ()] 'Japan Bank for International Cooperation Institute'. M Taniuchi . *JBICI Review* 2006. (14) .
379 (Global imbalances and Asian economies)

380 [Eaton and Gersowitz ()] 'LDC participation in international financial markets', debt and reserves'. J Eaton , M
381 Gersowitz . *Journal of Development Economics* 1980. 7 p. .

382 [Johansen and Juselius ()] 'Maximum likelihood estimation and inference on cointegration with applications to
383 the demand for money'. S Johansen , K Juselius . *Oxford Bulletin of Economics and Statistics* 1990. 52 p. .

384 [Huang ()] 'Modeling China's demand for international reserves'. G Huang . *Applied Financial Economics* 1995.
385 5 p. .

386 [Hendry and Ericsson ()] 'Modeling the demand for narrow money in the United Kingdom and the United States'.
387 D F Hendry , N R Ericsson . *European Economic Review* 1991. 35 p. .

388 [Genberg et al. ()] 'Official reserves and currency management in Asia: Myth, reality, and the future'. H Genberg
389 , R Mccauley , Y C Park , A Persuad . *Geneva Report on the World Economy* 2005. 7.

390 [Frenkel ()] 'Openness and the demand for international reserves'. J Frenkel . *National Monetary Policies and*
391 *International Financial System*, R Z Aliber (ed.) 1974b. University of Chicago Press.

392 [Heller ()] 'Optimal international reserves'. H R Heller . *Economic Journal* 1966. 76 p. .

393 [Frenkel and Jovanovic ()] 'Optimal international reserves: a stochastic framework'. J Frenkel , B Jovanovic .
394 *Economic Journal* 1981. 91 p. .

395 [Alfaro and Kanczuk ()] 'Optimal reserves management and sovereign debt'. L Alfaro , F Kanczuk . *National*
396 *Bureau of Economic Research* 2007. (NBER Working Paper 13216)

397 [Johansen ()] 'Statistical analysis of cointegrating vectors'. S Johansen . *Journal of Economic Dynamic and*
398 *Control* 1988. 12 p. .

399 [Kwiatkowski et al. ()] 'Testing the null hypothesis of stationarity against the alternative of a unit root. how
400 sure are we that economic time series have a unit root?'. D Kwiatkowski , P C B Phillips , P Schmidt , Y
401 Shin . *Journal of Econometrics* 1992. 54 p. .

402 [Karfakis ()] 'The demand for international liquidity: a cointegration approach'. C Karfakis . *Applied Financial*
403 *Economics* 1997. 7 p. .

404 [Frenkel ()] 'The demand for international reserves by developed and less-developed countries'. J Frenkel .
405 *Economica* 1974a. 41 p. .

406 [Ford and Huang ()] 'The Demand for International Reserves in China: An ECM Model with Domestic Monetary
407 Disequilibrium'. J L Ford , G Huang . *Economica* 1994. 61 p. .

408 [Khan and Ahmed ()] 'The demand for international reserves: a case study of Pakistan'. K Khan , E Ahmed .
409 *The Pakistan Development Review* 2005. 44 p. .

410 [Jo ()] *The determinants of international reserve hoarding in Korea: cointegration and error correction approach*,
411 *Working paper*, G J Jo . 2007. Korea. Kiemyung University

412 [Cifarelli and Paladino ()] *The international reserves gulf: is it for real*, G Cifarelli , G Paladino . 2006.
413 Department of Economics, University of Florence Working Paper 142

414 [Ramachandran ()] 'The optimal level of international reserves: evidence for India'. M Ramachandran .
415 *Economics Letters* 2004. 83 p. .

416 [Narayan ()] 'The saving and investment nexus for China: evidence from cointegration tests'. P K Narayan .
417 *Applied Economics* 2005. 37 p. .

418 [Elbadawi ()] 'The Sudan demand for international reserves: a case of a labor-exporting country'. I A Elbadawi
419 . *Economica* 1990. 57 p. .

420 [Ramachandran ()] 'The upsurge of foreign reserves in India'. M Ramachandran . *Economic Modeling* 2006. 28
421 p. .

422 [Bank ()] *World Development Indicators*, World Bank . 2007. 2007. Washington, D.C.