

1 The Stable Bounded Theory an Alternative to Projecting 2 Populations: The Case of Mexico

3 Iliana Zárate-Gutiérrez

4 Received: 14 December 2017 Accepted: 3 January 2018 Published: 15 January 2018

5

6 Abstract

7 Nowadays the population data of countries as Japan, India, China, United States and Mexico,
8 at glance seem to evolving over time according to a logistic pattern. In this context arises the
9 following research question: will there be any form to prove the hypothesis of the logistic
10 pattern? But this question implies three questions more, is there exist a minimum and a
11 maximum for population growth? Will be able to be the values of the maximum and
12 minimum determined numerically? And how can this information be used to projecting the
13 population? In order to answer above questions we use the Stable Bounded Theory. The data
14 we used in this paper were elaborated by National Institute of Statistic and Geography from
15 Mexico and they cover last 225 years. Key results of the paper indicate that; first, in Mexico
16 the assumption about the logistic pattern is true, second, minimum value for population
17 growth of Mexican population is 7.1 million, while maximum is 153.6; and third, using the
18 minimum and maximum values estimated and the Logistic pattern we forecasted México's
19 population, so that, in 2020 will be 125.18 million, in 2030 will be 134.51 million, for 2040 will
20 be 141.1, and in 2050 will it arrive to 145.56.

21

22 **Index terms**— forecast, population, stability, logistic pattern, gaussian pattern.

23 1 I. Introduction

24 The forecast of Mexico's population have been traditionally done using the demographic components method,
25 which is based on the estimation of births, deaths, migrants and immigrants, which are elements that determine
26 the change in human populations. This method estimates births and deaths, projecting traditionally fertility and
27 mortality using logistic functions (Partida, 2006). However, emigrants and immigrants have not been projected
28 using mathematical models; their forecast has been restricted only to establishing assumptions about their
29 behavior in future.

30 The demographic components method also provides us demographic dynamics of the country through
31 predicting the future behavior of its components such as fertility, mortality and international migration. Due
32 to this, the method can introduces for each component (fertility, mortality and migration) several sources of
33 error such as: 1) Errors in data, since if the data are not reliable or accurate, they will produce biased
34 forecasts; 2) Logistic functions used to projecting mortality and fertility are often not adequate, and 3) The
35 minimum and maximum that are set in order Author ? ?: National Population Council from Mexico. e-mails:
36 xavier.gonzalez@conapo.gob.mx, izarate@conapo.gob.mx to projecting fertility and mortality are not statistical
37 estimations, but are fixed in an ambiguous way.

38 So that, if all above error types are present in the three components, nine error sources would be introduced.
39 But if is projected the total population only is introduced three error sources and so, the projections may be
40 more accurate. So, purpose of this paper is firstly, demonstrate that the population growth in Mexico follows
41 mathematical laws very accurate that allows estimate the maximum and minimum of the growth and besides
42 determine the evolution pattern of Mexico's population through time, and secondly, use the results to obtain
43 forecasts of the Mexican population until year 2050.

44 **2 II. Literature Review**

45 The United Nations (UN) publishes projections of populations around the world. Traditionally, The UN produced
46 them with standard demographic methods based on assumptions about future fertility rates, survival probabilities,
47 and net migration. Such projections, however, were not accompanied by formal statements of uncertainty
48 expressed in probabilistic terms. In July 2014 the UN for the first time issued official probabilistic population
49 projections for all countries to 2100 (Alkema, 2015).

50 There exist several methods to project the population. Some of them project the total population using an
51 initial population and future rates of population growth. Other which is called components method, projects the
52 population by age and sex using an initial age and sex structure of the population and projections of fertility
53 and mortality (The Cohort Component Method for Making Population Projections, 2017). Some international
54 organizations prepare population projections for the world, regions and countries. One of them organizations
55 is the UN and the U.S. Census Bureau. Other organizations as World Bank and the International Institute
56 for Applied System Analysis (IIASA) also prepare populations projections for world, major regions, and for
57 individual countries. Each of these organizations uses slightly different methodologies, makes assumptions also
58 different about the future demographic trends, and begins with slightly different estimates of current population
59 size. Nevertheless, for the next 50 years their results fall within a relatively small band (Population Reference
60 Bureau, 2017).

61 According to the World Population Prospects: the 2015 revision, nowadays world's population is 7.3 billion
62 and is expected to reach 8.5 billion in 2030, 9.7 in 2050, and 11.2 in 2100. China and India continue being
63 the two countries with more population in the entire world, representing 19 and 18% of the world's population
64 respectively. However, projections indicate by 2022 the India's population will be greater than the China's
65 population. Today, one of the ten countries that have more population worldwide is in Africa (Nigeria), five are
66 in Asia (Bangladesh, China, India, Indonesia and Pakistan), two are in Latin America (Brazil and Mexico), one
67 is in Northern America (USA) and one is in Europe (Russian Federation) (United Nations, 2017).

68 Currently, the world population continues to grow although more slowly than in the recent past. Ten years
69 ago, world population was growing by 1.24 per cent per year. Today is growing by 1.18 per cent per year or
70 approximately an additional 83 million people annually. The most demographers worldwide expect this growth
71 will continue during the rest of this century (World Population History, 2017).

72 Also is very important consider that a projection is not a prediction about what it will happen, it is indicating
73 what will happen if the assumptions which underpin the projection actually occur. These assumptions are often
74 based on patterns and data trends which we have previously observed (Australian Bureau of Statistics, 2017).

75 **3 III. Methodology a) Data used**

76 Data we used in this paper were Mexico's population of the last 225 years and they covered 1790-2015 period.
77 Source of these data is the National Institute of Statistic and Geography (INEGI by its acronym in Spanish)
78 (Table 1).

79 **4 b) Evolution of Mexico's population at last 225 years**

80 At last 225 years Mexico's population has grown under effect of conditions socials, politics and economic very
81 different. Through this period we can identify three scenarios that undoubtedly have contributed to establish
82 the demographic dynamic and the population volume that has the country nowadays.

83 The first scenario is located in the nineteenth century in which the growth of the population was very slow.
84 The second scenario refers to a part of the twentieth century in which growth continued slowly, but from the year
85 1930 began an exponential growth. The third scenario is located at end of the 20th century and what goes of
86 century XXI, in which the exponential growth of the population has ended to giving pass to slower growth than
87 the exponential (Figure 1). As we can see in the figure 1, in 1790, Mexico had only 4.64 million of inhabitants
88 and had to passing little more than 90 years for the population reached the double. For 1900, the population was
89 13.6 million of persons, while in 1960 reached 34.9 million, this is, 7.7 million more than the double of 1900, this
90 means that, a process that took more than 90 years in century XIX, in century XX it took a little more than 50
91 years. But the rapid growth of the population in century XX continued to increasing, so that, in 1980 Mexico
92 reached 66.8 million, only 3 million less than double of 1960, what indicated that in a few more of 30 years the
93 population would duplicate again. However, since 1980 to 2015 have passed 35 years and the population has not
94 duplicated, what seems to indicating the rapid growth of the population has been stopped.

95 We can also see in figure 1 that Mexico's population has been growing since 225 years ago continuously, so that
96 arise follow question: will continue growing and growing in future? We think no, and alike a lot of demographers
97 in our country and in worldwide we expect the population will stabilize or reach a maximum value and will
98 start to decreasing. In both cases implies that it must exist a maximum value to population's grow and the
99 answers regarding its existence and the calculation of this value seem to being in the Stable Bounded Theory
100 (Gonzalez-Rosas, 2012).

101 5 c) The maximum of the Mexican population

102 The Stable Bounded Theory rests in two fundamental postulates, first, that in each year the population is a
103 random phenomenon, so, according to the probability theory in each year must have a mean and a variance.
104 Second, the mean of the population is equal to a mathematical function which depends on time, what implies
105 then by properties of the mean that in each year the observations of the population will be equal to a quantity
106 determined by the mathematical function plus a certain random deviation which it will happen according a
107 probabilistic law. Medhi (1981) called to the mathematical function, the deterministic component and the
108 random deviation, the stochastic component. Such that, under these postulates the behavior equations of the
109 observations and the mean of the population in each time would be: $t t f P ? + =) ((1)) (t f t P = \mu (2)$

110 Where, μ Denotes population in time t , δ is an unknown mathematical function, t Are
111 random variables that we suppose independents, with distribution law Normal, mean $\mu = 0$, And constant
112 variance σ^2 , and μ Denotes population's mean in time t .

113 In order to proving that value maximum exists the Stable Bounded Theory uses the population's change
114 amount respect time. Due to population's change amount between a time and other is measured with the slope
115 of the straight line that joins two points of the bi-dimensional space defined by time and the population, we
116 calculated the slopes and middle values of two consecutive population values of following way: The table 2 has
117 the results of the calculations and in figure 2 As we can see in figure 2 the behavior of slope in terms of the middle
118 values is also random, so that, according to the probability theory must also have a mean and a variance, and as
119 a consequence of the second postulate of the Stable Bounded Theory its mean must be equal to other unknown
120 mathematical function that we will denote with the letter g . It is important also to point out that function g
121 depends of population. $i i P i t t P P i i t t ? ? = ? + + 1 1 (3) 2 1 i i i i t t$

122 In figure 2, we can also observe that function g seems to be a parabola, so that, if this assumption is true
123 must there be two values of the population where the g function's curve intersect the X axis. Those values we
124 will denote them as μ_1 and $\mu_1 + \mu_2$. But besides, is important point out that in those values the change
125 amount regard time is zero, what implies $\mu_1 + \mu_2$ is a maximum value for the population and μ_1 is a
126 minimum value. This fact proves empirically that mean of Mexico's population is bounded by those values. From
127 the mathematical point of view, the maximum and minimum values are equal to those values of the population
128 that make the slope of deterministic component of 5 is zero, that is, $C BP AP i i t t + + = 2 0$

129 and after, using the formulas to calculating the roots of a parabola we have that $A C A B A B k 2 4 2 2 1 ?$
130 $+ ? = (7) A C A B A B k k 2 4 2 2 2 1 ? ? = + (8)$

131 These results indicate that formulas 7 and 8 are estimators of the minimum and maximum values of the
132 population respectively. The following table 3 presents the estimates of least squares ordinary of the constants
133 A , B and C , and the p-values to determining their statistical significance. As we can seen, the three coefficients
134 are significantly different from zero, so that, to estimate the maximum and minimum values of the population,
135 the estimations of the coefficients were substituted in 7 and 8, obtaining that,

136 6 = + k k

137 In addition to the significance of the parameters, value of the F Statistic was 121.87 with a p-value of 0.0000,
138 which proves that the parabola assumption in 6 is true with a determination coefficient 90.29% 1 1 The residual
139 analysis indicates that the random variables of the model are distributed normal, are independent and have
140 constant variance.

141 . These results together with the fulfillment of the assumptions of the residuals of 5 prove mathematically
142 the existence of the maximum and minimum of the Mexican population. Finally, it is important to clarify that
143 the values $\mu_1 = 7.1$ and $\mu_1 + \mu_2 = 153.6$ are bounds for the mean of the population, but not for the
144 observations, which according to the probability theory they will deviate a certain amount around the mean
145 depending on its variance, therefore they can be greater or lesser than $\mu_1 = 7.1$ and $\mu_1 + \mu_2 = 153.6$, but
146 their occurrence will be governed by a probabilistic law.

147 7 d) The pattern of population growth in Mexico

148 According to the postulates of the Stable Bounded Theory, the behavior equations of the observations and mean
149 of the population in each time are, $t t f P ? + =) ((t f t P = \mu$

150 The problem is that in practice the function δ is unknown, however, the trend of data and the
151 existence of the maximum and minimum values can give us idea of how is its derivative, and the theory of
152 differential equations can help us to deducing its mathematical equation. Firstly, according to trend of observed
153 data, the function δ has to be increasing, and so, its derivative will be positive. Secondly, due to
154 existence of the maximum and minimum values its derivative will have to be zero in those values. Based on these
155 properties the Stable Bounded Theory deduces a function which satisfies those properties mentioned.

156 The Stable Bounded Theory begin supposing that derivative of the unknown function is given by the product
157 of two functions μ_1 and μ_2 , one that depends of the population and other that depends of time,
158 forming a differential equation of separable variables (Wiley, 1979), which has as solution a function that relate
159 the population and time, namely, $(2 1 t h P h dt dP = (9)$

11 A) PUNCTUAL FORECASTS OF THE POPULATION IN MEXICO

160 Where $dt DP$, denotes the derivative of δ ???" δ ???"(??) Now since the derivative must be positive and equal
161 to zero in the minimum and maximum values, then the function $? 1$ (??) can be as follows:) () (2 1 1 1 k k
162 $P k P P h ? ? ? =$ And so,) () (2 2 1 1 t h k k P k P dt dP ? ? ? =

163 Where $? 1$ (??) ?? 1 and ?? 1 + ?? 2 are the minimum and maximum values.

164 We can observe that due to ?? 1 and ?? 1 + ?? 2 are bounds inferior and superior respectively of the
165 population, then quantity (?? ? ?? 1) is always positive, but quantity (?? ? ?? 1 ? ?? 2) is negative, therefore
166 (?? ? ?? 1) (?? ? ?? 1 ? ?? 2) is negative, what implies ?? 2 (??) must be negative in order to the derivative
167 be positive as we require. By other hand, we can also see that when the population is equal to ?? 1 and ?? 1 +
168 ?? 2 and then the derivative is zero, the other condition we require.

169 8 Now separating variables we have

170 $dt t h dP k k P k P ? ? ? = ? ? ?) ((1 2) 2 1 1$

171 Solving by partial fractions the indefinite integral of the left hand we have that Where ??(??) is an unknown
172 function such that its derivative is equal to ?? 2 (??) and which can be determined by using the observed data,
173 since,) (1 1 2 t k P k Ln ? = ? ? ? ? ? ? ? ? ? ? (11) What implies if the Stable Bounded Theory is true that
174 variable ?? 2 ?????? 1 ? 1 must be a function of time t.

175 Gonzalez -Rosas (2010) call to this variable the transformed of the population.

176 9 e) Estimation of the ??(??) function

177 In order to estimate the function ??(??) first we estimated ?? 2 and after substitute estimations on equation 11,
178 this is, $1 . 7 1 = k 6 . 1 5 3 2 1 = + k k 5 . 1 4 6 2 = k$

179 After that, we assign the values observed of the population and calculated the transformed of population. In
180 table 4 we can see results and in figure 4 the behavior of the transformed and time. But, due to the derivative
181 of ??(??) has to be equal to ?? 2 (??) which has to be negative, so, in the case of straight-line pattern the ??
182 parameter has to be negative, and in the case of parabola pattern the parameters A and B have to be negatives.
183 If we use the straight-line we obtain a pattern called Logistic, but if we use the parabola we have a pattern called
184 Extended Gaussian. The equations of these patterns are respectively, $t t e k k P ? + + + = 1 2 1$ (12) $C t B t$
185 $A t e k k P + + + + = 2 1 2 1$ (13)

186 In the equation 12, due to ?? is negative when time is increased then is P is near to ?? 1 + ?? 2, and in
187 equation 13, because A and B are negatives when time is increased P is near also to ?? 1 + ?? 2. That is, those
188 parameters determine how quickly P approaches the maximum. Due to these characteristics the parameters ??,
189 A and B are called the quickness parameters (González-Rosas, 2018).

190 In order to determining what pattern is adjusted better to observed data we estimated both the straightline
191 and the parabola. The following table presents the ordinary least squares estimation and the p-values of the
192 straight-line and parabola. As we can see in table 5 all parameters are significantly different of zero with a
193 5% significant level, except the B parameter which is significant at 6% level. We can also see the p-values of
194 both F tests that indicate both equations are correct at 5% significant level. Finally, we have the determination
195 coefficient which point out that straight line explain the 99.86 percent of the data variation of transformed
196 population, while parabola explain 99.17 percent, this is, the straight -line explain data variation better. And so,
197 estimated equations of the logistic and Gaussian patterns are respectively, (15) In figure 5, we have the graphics
198 of both patterns. As we can see at glance both logistic pattern and Gaussian pattern fit very well to the observed
199 data at all period, however, the Gaussian pattern seems to is adjusted better than Logistic pattern in 1983-1910
200 period. But by other hand, Logistic pattern seems to When we substituted data at equation 16 we found that
201 the MAE for the logistic pattern was 98.73, while for the Gaussian pattern was 102.26. Based on these results
202 we decided that Logistic pattern explain better the population evolution through time in Mexico.

203 10 IV. Results

204 11 a) Punctual forecasts of the Population in Mexico

205 All the results above prove that behavior of the mean of the population through time in Mexico is governed
206 by following mathematical equation: So that, when we gave values to time variable in equation 17 we obtained
207 punctual forecasts of the mean of Mexico's population for the 2016-2050 period (Annex 1). In figure 6, we can
208 observe that the model is adjusted very well to the observed data. According to the results of equation 17, we
209 found that in 2025 the mean of Mexico's population will be 130.2 million of people, in 2040 will be 141.1, and for
210 2050 the mean of Mexico's population will reach 148 million of people. Still 8 million per under the population
211 maximum that is of 153.6 people.

212 It is very important to clarify that what we are forecasting is the population mean not the observations,
213 because, those are random and hence cannot be predictable, so that, in 2025 the real observation can be below
214 or above to the 130.2 million, the same will happen in 2040 and 2050.

215 12 V. Discussion

216 If we consider that in each moment of time the population is a random phenomenon, then we can explain
217 behavior irregular observed of the population in figure 1, however, this hypothesis brought as a consequence that
218 we cannot forecast the population, since random phenomena cannot be predicted. So, the question arose, how
219 can we predict what is not predictable?

220 The answer arrived us of the probability theory, since, according this theory if the population is a random
221 phenomenon must to have a mean and a variance, so that, when we supposed that mean had a deterministic
222 behavior given by a mathematical function that depends of time, then we accept that we would be able predict
223 to least the mean of the population.

224 After that, according to trend of data, the function had to be growing, however population cannot grow, grow
225 and grow, so that, was better suppose that must tend to the stabilizing or maybe to reach a maximum and after
226 that, decrease. This situation brought us two questions more, firstly, what is the value, where the population is
227 going to stabilize or reach the maximum in future? And secondly, what is the function we had to use to predict
228 the population? This two questions we answered them using the Stable Bounded Theory, which allowed us to
229 prove existence of a stabilizer value and besides to calculate it. Also we find the function or pattern which allowed
230 us to do the predictions of the population.

231 13 VI. Conclusions

232 In Mexico, for the period 1790-2050, the behavior of mean of population through time is governed by a
233 mathematical low that depends of time.

234 By first time, the scientific community has mathematics tests about subjects that we only watch at glance,
235 that is, tests about the logistic pattern of the population growth.

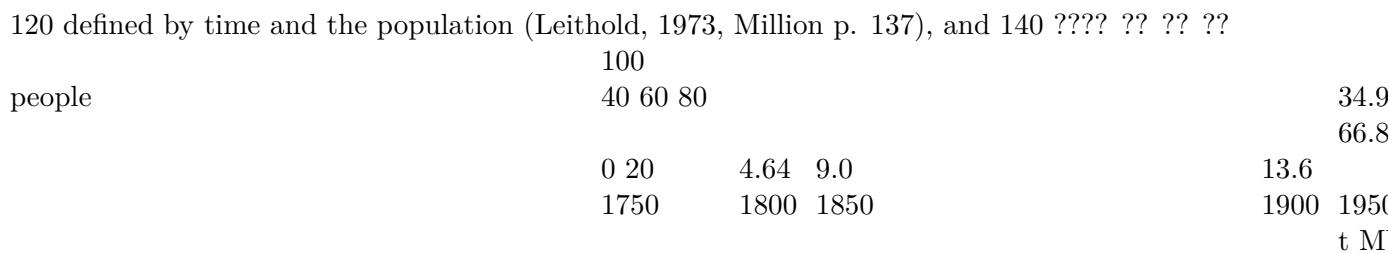
236 In Mexico in order to explaining evolution of the population trough time, the demographers have used the
237 logistic pattern, however, never they have given a mathematic test, this paper prove all the hypothesis used about
238 it and substitute the empirical aspects.

239 Although this exercise was done with data from Mexico, it is important to make it clear that the Stable
240 Bounded Theory can be applied to any country where data on the population are available. Also it can be used
241 to forecasting mortality, fertility and net migration.

242 However, it is necessary to warn that the results of this paper are based on the assumption of the social,
243 economic and political conditions of Mexico will continue without change. If this assumption it is not fulfill, the
244 forecasts we are giving will not be true.

245 Also it is necessary to warn that the mathematical modeling of reality is based on assumptions, and that
246 theoretical results are true only if the assumptions fulfill, so that, it is necessary to do a great effort to prove that
247 the assumptions are true.

248 Finally, is clear that any exercise to predict the future is exposed a lot of error sources: wrong data, false
249 assumptions, and wrong models, so on. Therefore, it is necessary to identify all possible error sources, and then
250 utilize methodologies that minimize those errors. The Stable Bounded Theory is an example of that.


1

Year	Population	Year	Population
1790	4.64	1910	15.2
1803	5.76	1921	14.33
1810	6.12	1930	16.66
1820	6.2	1940	19.7
1827	8.0	1950	25.8
1830	7.996	1960	34.9
1838	7.004	1970	48.2
1842	7.015	1980	66.8
1850	7.5	1990	81.25
1858	8.6	1995	91.16
1870	8.78	2000	97.48
1880	9.0	2005	103.26
1893	11.99	2010	112.34
1900	13.6	2015	119.51

Source: 1790-2010 INEGI, 2017a; 2015 INEGI 2017b

It is very important point out that the most data of the table 1 were calculated by a population census.

Figure 1: Table 1 :

[Note: + (4) Where, ?? ???? , Denotes the slope of the straight-line between (?? ?? ?? ?? ,)]

Figure 2:

2

	2.5000				
	2.0000				
p	1.5000				
e					
s					
S	1.0000		g(p)		
l					
o					
	0.5000				
	0.0000	20.00	70.00		
-30.00		k1		120.00	170.00
-0.5000			Middle values		
Year	Time	Population	Middle Points	Slopes	
1790		0	4.64	5.20	0.0862
1803		13	5.76	5.94	0.0514
1810		20	6.12	6.16	0.0080
1820		30	6.2	7.10	0.2571
1827		37	8.0	8.0	-0.0013
1830		40	7.996	7.50	-0.1240
1838		48	7.004	7.01	0.0028
1842		52	7.015	7.26	0.0606
1850		60	7.5	8.05	0.1375
1858		68	8.6	8.69	0.0150
1870		80	8.78	8.89	0.0220
1880		90	9	10.50	0.2300
1893		103	11.99	12.80	0.2300
1900		110	13.6	14.40	0.1600
1910		120	15.2	14.77	-0.0791
1921		131	14.33	15.50	0.2589
1930		140	16.66	18.18	0.3040
1940		150	19.7	22.75	0.6100
1950		160	25.8	30.35	0.9100
1960		170	34.9	41.55	1.3300
1970		180	48.2	57.50	1.8600

Figure 3: Table 2 :

3

	Parameter Estimation	Estandar Error	t-Value	p-Value
A	-0.0003	0.00005	-5.8	0.000
B	0.0482	0.00558	8.64	0.000
C	-0.3257	0.08217	-3.96	0.001

[Note: Source: Own calculations based on the middle points and slopes of table 2 and Stata/SE 11.1]

Figure 4: Table 3 :

4

Year	Time	Population	Transformed of the Population
1827	37	8.00	5.0515
1830	40	8.00	5.0558
1858	68	8.60	4.5503
1870	80	8.78	4.4379
1880	90	9.00	4.3155
1893	103	11.99	3.3594
1900	110	13.60	3.0650
1910	120	15.20	2.8344
1921	131	14.33	2.9538
1930	140	16.66	2.6586
1940	150	19.70	2.3609
1950	160	25.80	1.9202
1960	170	34.90	1.4504
1970	180	48.20	0.9410
1980	190	66.80	0.3737
1990	200	81.25	-0.0250
1995	205	91.16	-0.2977
2000	210	97.48	-0.4769
2005	215	103.26	-0.6476
2010	220	112.34	-0.9367
2015	225	119.51	-1.1935

[Note: Source: Own calculations based on equation 11. The transformed of the years 1790, 1803, 1810, 1820, 1838 and 1842 were declared not defined because does not exist the natural logarithm of a negative number. The transformed of year 1850 was not considered because was an outlier.]

Figure 5: Table 4 :

5

Parameter Estimation		Standar Error	p-Value of t test	p-Value of F Test	R 2
?	9.4776	-0.0474	0.113421	0.000 0.000	0.0000 0.9986
			0.00058		
A	-0.0001		0.000014	0.000	
B	-0.0076		0.00374	0.056	0.0000 0.9917
C	5.5019		0.2301	0.000	

Source: Own calculations based on table 4 and Stata/SE 11.1

Figure 6: Table 5 :

251 [Population Forecasts in Mexico] , *Population Forecasts in Mexico* p. .

252 [Source: Own calculations based on equation] , *Source: Own calculations based on equation* p. 17.

253 [United Nations. Department of Economic and Social Affairs (2017)] , <http://www.un.org/en/development/desa/news/population/2015-report.html> United Nations. *Department of Economic and Social Affairs* 2017. June 24. 2017.

254 [González -Rosas ()] *Editorial Académica Española. [The Stable Bounded Theory: Fundamentals, concepts and methods, to project phenomena that cannot grow or decrease indefinitely]*, J González -Rosas . 2012. Saarbrücken, Alemania; Saarbrücken, Germany. (La Teoría Estable Acotada: Fundamentos, conceptos y métodos, para proyectar los fenómenos que no pueden crecer o decrecer indefinidamente. Spanish Academic editorial)

255 [Medhi ()] J Medhi . *Stochastic Processes*, (New York) 1981. John Wiley & Sons. (nd Edition)

256 [Principales resultados de la Encuesta Intercensal de INEGI ()] ‘Principales resultados de la Encuesta Intercensal de’. http://www.beta.inegi.org.mx/contenidos/proyectos/encogares/especiales/intercensal/2015/doc/eic2015_resultados.pdf INEGI 2017b. 2015. 2015. 2017. (Main results of the Intercensal Survey of. Main results of the 2015 Intercensal Survey)

257 [Projecting Global Population to 2050 and Beyond World Population History (2017)] ‘Projecting Global Population to 2050 and Beyond’. <http://worldpopulationhistory.org/projecting-global-population/> *World Population History*, 2017. June 24, 2017.

258 [Partida and Conapo ()] *Proyecciones de la Población de México*, B V Partida , México Conapo . 2006. 2005 -2050. (Projections of the Population of Mexico 2005-2050. CONAPO. Mexico)

259 [Sistema para la Consulta de las Estadísticas Históricas de México INEGI ()] ‘Sistema para la Consulta de las Estadísticas Históricas de México’. <http://dgcnesyp.inegi.org.mx/cgi-in/ehm2014.exe/CI010010> INEGI 2017a. 2014. 2014. (System for the Consultation of Historical Statistics of Mexico. Recovered on May)

260 [Gonzalez-Rosas ()] ‘Teoría Estadística y Probabilística de los Fenómenos Estable Acotados’. J Gonzalez-Rosas . *Statistical and Probabilistic Theory of Phenomena Stable -Bounded*, 2010. Tesis de maestría. Universidad Nacional Autónoma de México ; National University Autonomous of Mexico (Master thesis)

261 [Leithold (ed.) ()] *The calculation with analytic geometry*, L Leithold . México, Harla S.A. de C.V. (ed.) 1973. Mexico. (El Cálculo: Con geometría analítica. nd Edition)

262 [The Cohort Component Method for Making Population Projections (2017)] <http://www.un.org/esa/population/techcoop/PopProj/module1/chapter2.pdf> *The Cohort Component Method for Making Population Projections*, 2017. June 24. 2017.

263 [González-Rosas (2018)] ‘The Stable Bounded Theory. An alternative to projecting the net migration. The case of México’. J González-Rosas . *In Athens Journal of Social Sciences* 2018. January 2018. 5 (1) .

264 [Alkema et al. ()] ‘The United Nations Probabilistic Projections: An introduction to demographic forecasting with uncertainty’. L Alkema , P Gerland , A Raftery , J Wilmoth . <http://www.abs.gov.au/websitedbs/a3121120.nsf/home/statistical+language+-+estimate+and+projection> *Australian Bureau of Statistics Statistical Languaje. Estimate and Projection* 2015. 2017. June 24. 2017. (37) p. . (Foresight)

265 [Understanding and using Population projections Population Reference Bureau ()] ‘Understanding and using Population projections’. <http://www.prb.org/Publications/Reports/2001/UnderstandingandUsingPopulationProjections.aspx> Population Reference Bureau 2017.

266 [Wilye and Ray ()] C Wilye , Ray . *Differential equations*, 1979. McGraw Hill. Mexico. p. 593.