

1 Empirical Evidence on the Impact of Bank-Specific Factors on
2 the Commercial Banks Performance: The Camel Model and Case
3 of Ethiopian Banks

4 Abdurezak Mohammed Kuhil¹

5 ¹ Addis Ababa University

6 *Received: 11 December 2017 Accepted: 2 January 2018 Published: 15 January 2018*

7

8 **Abstract**

9 Abstract: The study has investigated one of the key research questions: how do bank specific
10 factors are related to bank performance? The model constructed is framed based on the
11 commonly used supervisory tool to monitor bank performance: CAMEL. This consists of
12 elements from Capital Adequacy, Asset Quality, Management, Earning and Liquidity. It has
13 used six variables representing each of the components and run a regression model based on
14 fixed and random models. The outcome shows that many of the bank specific factors have a
15 significant statistical relationship with performance measures. Despite the mixed result in the
16 various models, the study explored that bank's capital holding, asset quality and business
17 diversification, cost control and liquidity positions are important part of the management
18 decisions to have a significant influence on performances.

19

20 **Index terms**— Performance, Commercial Banks, Ethiopia, CAMEL Model

21 **1 I. Introduction**

22 The Money and banking Proclamation No. 83/1994 identifies banking business as:?.an operation that involves
23 such activities like receiving funds, discounting and negotiating of promissory notes, drafts, bills of exchange
24 and other evidence of debt; receiving deposits of money and commercial paper, lending money, and buying and
25 selling of gold and silver bullion and foreign exchange. Even if the list in the proclamation is exhaustive, from
26 the balance sheet and income statements of banks it can be inferred that the main stay of banks largely relied on
27 the intermediation activities (NBE report, 2015/16). A bank is usually defined as an institution whose current
28 operations consist in granting loans and receiving deposits from the public (Mishkin, 2001). Therefore, as core
29 to their functions, banks need to mobilize deposits (in local and foreign currency) from the public so that they
30 can lend the deposit to borrowers and foreign currency users and earn income in the process. The need for more
31 liquidity is associated with the high leverage position following the very limited capital base of banks as compared
32 to their asset holdings. For instance, the capital to asset ratio for banks in Ethiopia in year 2015 is 17% reflecting
33 that a great part of banks' activity is financed through deposit collection (NBE, 2015/6).

34 From the income structure of banks, it appears that the current trend in banking activities seem altered
35 towards pursuing a mix of fee-generating activities along with the intermediation business. That is, instead of
36 just accepting deposits and making loans; they receive good sum of earning from fee-based activities like foreign
37 operations and off balance sheet activities. Literature also supports that non-interest income is among the most
38 rapidly growing sources of revenue for deposit accepting institutions ??Rose and Hudgins, 2008). A similar trend
39 has been noted in the Ethiopian banking situation where income from non-interest sources is revealing growing
40 trend overtime. For instance, the share of fee income from international banking activities in some banks exceeds
41 the income from interest sources. Industry wide scenario also reflects fee income has constituted almost half
42 of the total earning of Ethiopian banks (NBE report, 2015/16). Nachane and Ghosh (2007) remarked that the

43 dynamism in the banking sector has urged banks to be innovative in their operations. This innovation process
44 has contributed for wider expansion in the off-balance sheet activities which are contributing for the expansion in
45 fee income. This may, however, have effect on increasing overall risk of banks by exposing them to high income
46 volatility. In addition, literature suggested that banks with relatively high non-interest earning assets are less
47 profitable (Demirgic-Kunt and Huizinga, 1999). Despite such argument on the risk associated with holding high
48 share of non-interest income, the significant share of fee income justifies the need to incorporate them in the
49 analysis of bank performance. More specifically, if performance is rated based on profitability measure, excluding
50 fee-based variables will lead to bias. For instance, Rogers (1998) explained that the exclusion of nontraditional
51 activities in the estimation of bank performance and efficiency actually understates it. The other scenario which
52 differentiates banks from other businesses is that of the existence of risk factors. This is because the capital base
53 of a bank is smaller relative to the asset base and liability it holds. In terms of the risk types, ??llen and Cartelli
54 (2008) identified two major risk types which are associated with the core activities of banks: default and liquidity
55 risks. Thus, existence of both liquidity and default risk for a bank differentiates it from an ordinary firm and
56 the impact of such risk factors on performance should deserve consideration. Beyond the abovementioned factors
57 driving bank performances, there remains several factors to have implications on banks profitability. These
58 factors are mostly classified in to two parts: internal and external. For instance, Al-Tamimi (2010) and Aburime
59 ??2005) have classified the determinant factors as internal and macroeconomic variables. The internal factors are
60 defined as the characteristics exhibited by individual banks and which fall under the management's control. On
61 the other front, the external factors include sector or country wide factors and appear outside the control of the
62 management but have a bearing on performances. There are also studies which attempted to separate the external
63 factors into sector and macroeconomic variable (Ongore, 2011). The former considers industry related factors
64 that commonly affects the individual banks while the later takes into account the general economy wide variables.
65 This study provides focus on bank specific variables that have a bearing on the performance of banks. We follow
66 on the approach that is most commonly used by bank regulators to monitor performance: CAMEL approach
67 with the core aim of exploring factors under the control of the management on banking operational excellence.
68 The core theme of the research is to investigate the impact of bank specific factors, which are highly related to
69 internal management of resources, on performance of banks. In such endeavor the banks own undertaking to excel
70 in performance through managing some of the key selected determinant factors will be examined through testing
71 a hypothesis: Ho: Bank Specific Variables has no impact on the Performance of Banks. The study employs a
72 panel data of all commercial banks operating in the country from 19990-2015.

73 2 II. Literature Review

74 The approach that is most commonly used by bank regulators to monitor performance is the CAMEL approach.
75 This is a composite of various bank performance components that management is expected to act upon so as to
76 improve performances. The CAMELS approach evaluates financial institutions like banks on the basis of SIX
77 critical dimensions which are: Capital adequacy, Asset quality, Management, Earnings Liquidity, and Sensitivity
78 to Market risk. Nevertheless, the sensitivity to market risk which requires a well developed financial market is
79 not commonly used in the developing countries studies. Each of the components and the variables to be used in
80 this study is explained below:

81 3 III. Capital Adequacy

82 The Capital Adequacy ratio is the ratio of banks primary capital to risk weighted assets (Directive No. SBB/9/95).
83 Regulators like the NBE issue directives on the manner of computation of the capital adequacy ratio which is a
84 specification on the risk conversion rates for on and off balance sheet assets as well as classification of different
85 components of capital. The directive demands banks to strictly maintain a capital level exceeding or equivalent
86 to 8% of the risk weighted assets. This is with the intent that holding a reasonable level of capital is expected
87 to serve as cushion in times of crisis (Dang, 2011). Nevertheless, such view is also supported by others as
88 adequate capital level being a source of liquidity enhances performance via reducing the banks' financing costs
89 (Diamond, 2000). Holding a high capital level is also challenged by the counter view in that it reduces the return
90 on equity. This is because excessive capital encourages a low risk taking attitude that potentially impacts the
91 earning potential. Furthermore, a higher capital reduces the debt position of firms resulting in lower earnings
92 from the tax exemption from debt leverage Bourke (1989) and Berger (1995). Therefore, the impact of the capital
93 adequacy ratio has uncertain a priori as it could potentially reduce or improve performance depending on its
94 utilization and level of exposures. The study uses the capital to asset ratio which is not risk adjusted to proxy
95 the actual capital adequacy ratio as the data is not publicly available.

96 4 a) Asset Quality

97 As discussed above, one of the critical success factors for better bank performance is its ability to manage the
98 risk emanating from defaults. A bank balance sheet is mostly a composite of various asset elements such as cash,
99 foreign deposits, reserves at the NBE, loans, investments, fixed assets etc. However, the loan portfolio remains
100 to have the dominant share of the asset especially for banks that highly rely on the intermediation business for
101 their earnings. Therefore, keeping the quality of such asset is witnessed in many studies to affect performances.

102 For instance, Dang (2011) claims that delinquent loans are the highest risk components whose poor handling
103 can lead to substantial losses. Similarly, Liu and Wilson (2010) finds that problem in credit quality reduces
104 the profitability measures, the ROA and ROE. Correspondingly, the impact on the price measure Net Interest
105 Margin (NIM) appears positive as banks look for an increase in their margins to reimburse their default risk as
106 well as monitoring credits. Usually, the share of nonperforming loan in the total loan portfolio is employed to
107 measure the asset quality of banks. Even regulators sometime set a threshold for banks to monitor their asset
108 quality level. For instance, in Ethiopia, the NBE has set banks to maintain their nonperforming loan ratio to a
109 maximum of 5% of their credit exposure in terms of loans and advances. Nevertheless, banks usually keep their
110 record on delinquent loans confidential, hence, studies are obliged to use another proxy measure, the provision to
111 total loan ratio as a measure of the asset quality (Kumbirai and Webb, 2010). This study also uses the provision
112 to total loan ratio as a measure of the risk arising from credit defaults. As pointed in the start of this section,
113 banks ability to diversify income through integrating both interest and non interest income sources as another
114 variable revealing quality of assets. Therefore, the study also similarly follows the same trend as noninterest
115 income appears a growing business in the Ethiopian banking industry.

116 **5 b) Management**

117 Banks as financial firms managing large resources, their management quality obviously affects their performances.
118 Nevertheless, empirical studies usually confirm the difficulty in measuring management performances with
119 financial ratios ??Ongore, 2013). The regulator like NBE also apply various quantifiable and non-quantifiable
120 factors to rate the management performances. Empirically, however, there is an attempt to apply proxy financial
121 measures to measure management and mostly from the efficiency side. The ratios applied to measure management
122 include: operating profit to income ratio (Rahman et al., 2009) and costs to total assets (Nassreddine, 2013), cost
123 to income ratio ??ltunbas et. el (2001)). In terms of relationship with performances, the applied management
124 quality measures are found to relate positively with performances. For instance, Altunbas et. el., (2001)
125 investigated the relationship between management efficiency and profitability and finds a positive results. This
126 study also employs the cost to income ratio as well as the efficiency measures that directly relates to management
127 performance, the x-efficiency.

128 **6 c) Earning**

129 The ability of banks to generate adequate return from their operations is one of the key components of CAMEL. It
130 considers not only the ability to remain profitable but to ensure sustainable return from core earning sources. As
131 discussed in the introduction, Earning from fee generating activities nowadays is becoming a dominant banking
132 income sources while the perception of the regulators still relied on income from the intermediation activities.
133 Earning performance is usually measured therefore using the common profitability indicators like return on assets,
134 return on equity and net interest margin. Nevertheless, income mix analysis usually separates the non-interest
135 income sources from interest earning sources. Sustainability and innovation in banking therefore is emerging to
136 be reflected on the dominance of fee based income in the income composition of banks. This study also considers
137 the share of non-interest income sources from the total income in order to examine the reliability of the banks'
138 income as well as to explore its impact on the performance of banks.

139 **7 d) Liquidity**

140 The liquidity status of a bank indicates the bank's position to meet its obligations in a timely and effective
141 manner. Even its considered as one of the factors determine a bank to stand as a financial institution (Samad,
142 2004). The measurement used, nevertheless, has wide variations among the various empirical studies. Some
143 authors like Ilhomovich (2009) used cash to deposit ratio to measure the liquidity level of banks in Malaysia.
144 Others use the loan to deposit ratio, liquid asset to asset etc. Regulators in most countries, however, set the
145 minimum required level of liquidity holding of banks. A similar trend is witness in Ethiopia where the NBE set
146 the liquid asset to deposit ratio which is expected not to fall below 15% of the Bank's net current liability of which
147 around 5% is expected to be held in the form of primary reserve assets, cash and assets easily convertible to cash
148 (see directive no SBB 55/2013). Studies reveal a mixed outcome with regard to the relationship between bank
149 liquidity position and performance. Studies witnessing a negative relationship between liquidity and performance
150 claim that the liquidity reserves mainly of those that are compulsory remain a burden for banks (Berger and
151 Bouwman, 2009). Others find a positive relationship state that a reliable liquidity position improves performance
152 (Dang, 2011; Bourke, 1989). There are also other studies that are done in China and Malaysia that explored
153 absence of a significant relationship between liquidity and performances of banks (Said and Tumin, 2011). This
154 study, therefore, employees the liquid asset to deposit ratio, which is a measure used by the NBE to evaluate its
155 link with performances.

156 **8 IV. Methodology**

157 The unit of analysis for the study is all commercial banks operating in the country from 1990-2015. A quantitative
158 approach is adopted to form a causal link among different variables with bank performance measures. A panel
159 data set from 1999 to 2015 for all (eighteen) commercial banks is used for the quantitative study. The quantitative

160 study employs a panel data regression model to investigate the relationship between bank specific factors with
161 profit and price performances. Conceptually, the study uses the CAMEL framework which is a widely used
162 performance monitoring tool by regulators to set variables and establish relationship with performances. In
163 order to test the effect of bank specific factors on performances several models have been derived. The basic
164 model is primarily follows the commonly used regulatory approach to measure performance of banks across various
165 parameters. The CAMEL rating system which was introduced by the Basel and commonly accepted regulators
166 across countries including the National Bank of Ethiopia considers rating for its individual components: Capital
167 Adequacy Asset Quality, Management, Earning and Liquidity. The aggregate rating will be a derivative of the
168 result on each individual composite rating. Therefore, the a priori assumption on each rating is expected to
169 have a positive relationship with bank performance. In other words a bank scoring well in each component is
170 believed to performing well on composite basis. Therefore based on such framework the model is constructed as
171 follows: $Per\%_{i,t} = \beta_0 + \beta_1 BSF\%_{i,t} + \epsilon_{i,t}$ (1)

172 Where $Per\%_{i,t}$ is the proxy of bank performance measure for bank i in period t (for detailed definition of
173 the variable refers the conceptual framework and variable setting section of Chapter Five); $BSF\%_{i,t}$ is estimated
174 bank specific variables for bank i in period t ; and $\epsilon_{i,t}$ is the error term.

175 Based on the CAMEL framework the above model is then extended to incorporate proxies for each
176 component: $Per\%_{i,t} = \beta_0 + \beta_1 CAR\%_{i,t} + \beta_2 PRTL\%_{i,t} + \beta_3 NIITI\%_{i,t} + \beta_4 XEFF\%_{i,t} + \beta_5 COIN\%_{i,t} +$
177 $\beta_6 LATD\%_{i,t} + \epsilon_{i,t}$ (2)

178 Where CAR is capital adequacy ratio, PRTLprovision to total loans, NIITI-Non-Interest Income to Total
179 Income, XEFF-managerial efficiency, COIN-Total cost to Total income, LATD-Liquid assets to Deposits. The
180 summary definition of each variable is as shown below.

181 9 a) Variable Definition and a priori assumption

182 The independent and dependent variables are chosen from six proxies of bank specific factors and three
183 performance indicators that have been collected from interview and the regulatory organ formats of bank rating
184 with an added variable from the literature and the study result from efficiency assessment. The definition and the
185 expected relationship are framed based on the literature work. These are displayed on the below table: The data
186 used in the study mostly relies on secondary data sources. This is gathered mainly from the financial records of
187 each bank as well as various publications and databases of the NBE. A time series data from 1999 to 2015 for 18
188 commercial banks is used in the study.

189 10 c) Descriptive Statistics

190 In terms of maintaining asset quality records through controlling of non-performing assets, the ratio of PRTL
191 shows that banks on average are holding a provision level of around 4% of their outstanding loans. This is a bit
192 higher than the provision required for outstanding loans had all loans been in pass status and is closer to the
193 provision required for loans under special mention status (3%) as per the directives of the NBE (SBB 43/2008).
194 Therefore, based on such comparability, the level of industry wide problem asset stock does not seem significant.
195 The worrying issue is the variation across banks is significant with a standard deviation closer to 5 and a maximum
196 PRTL record of 28%. The distribution measure through skewness also shows an asymmetrical distribution with
197 a long tail to the right with higher positive value. Therefore, despite the good record of managing assets at
198 sector level, there appears a notable difference across banks in terms of managing their credit exposures which is
199 costing some banks up to 28% of their lending in the form of provision expenses. This remains to be a worrying
200 a concern of a regulator which has set a directives/circulator for banks to maintain their non-performing loans to
201 5% of their outstanding loans which later revised even to a reduced level ,3% as per a circular issued in relation
202 to meeting the Growth and Transformation Plan of the country (BSD09/2015). The other parameter, NIITI,
203 which is indicative of the banks attempt to ensure a diversified business mix through operating in non-interest
204 income sources also witnessed an encouraging trend. The mean score shows that banks were generating around
205 43% of their average income from non-interest income sources which are basically related to foreign exchange
206 transactions, commissions from off-balance sheet exposures, service related fees etc. This seems following the
207 global trend which is now shifting towards fee based sources that are serving as an additional income outlet to
208 banks through providing wide spectrum of services to their customers. The reason behind such trend is due
209 to the decline in interest income from intermediation business which is highly dependent on banks capacity to
210 mobilize deposits from customer bases. The less growth rate in deposit market and the high competition level
211 coupled with various regulatory measures (e.g. bill purchase) affecting the lending productivity seems shifting
212 the Ethiopian banks to work more towards searching for other income bases. The variation however is still strong
213 in such parameters where some banks seem by large reliant of the nonintermediation business for their income
214 sources while others are still dependent on the traditional intermediation business as their earning sources. With
215 regard to cost control, the aggregate cost to income ratio for the industry on average is 65%. This witnesses
216 the fact that banks are expending 65 cents in their various engagements to generate a 1 Birr income per their
217 transactions. The large variation is also an indicative for the existence a wider room for improvement for some
218 banks with regard to controlling their expenditures. On the liquidity front, the liquid asset to deposit ratio,
219 a commonly used measure of liquidity level by the NBE, shows that during the periods considered, banks are

220 operating at a reliable level of liquidity. Despite occasional adjustment in the regulatory requirement, the level
221 of LATD appears to exceed the standards of the NBE (15%) and witnesses a high liquid asset stock holding
222 (SBB/57/2014). This is in line with the argument for the growth in the share of non interest income sources
223 which is enforcing banks to operate under a high liquidity position through maintaining significant balance of
224 liquid asset bases such as foreign deposits. This is in fact usually offset by the counter side off balance sheet
225 commitments already allocated for letter of credit and other mode of trade payments. However, the ratio is still
226 strong if one considers the easily convertible and liquid nature of the accounts.

227 **11 d) Pearson Correlations**

228 Investigation of the relationship between variables with a Pearson correlation coefficient and result from the
229 significance value shows that in most of the variables the probability of getting a correlation coefficient this big
230 in an observation of 193, if the null hypothesis were true, is very low. Hence, we can gain confidence that there
231 is a genuine relationship between the variables in the model. For instance, the relationship between CAR and
232 the dependent variables (ROE, RoA, NIM) is much strong and negative with regard to the return on equity
233 than others due to the impact of change in capital on the level of returns from equity holdings. The negative
234 and strong relationship will not be a surprise considering the usage of capital as a denominator in computing
235 the return on equity; therefore, an increase in capital has a reverse impact on the earning to equity ratio and
236 vice versa. In addition, the variable has significant relationship with other explanatory variables of which it is
237 strongly and positively related to liquidity and cost to income measures. The positive relationship with liquidity
238 supports the argument for the use of capital as a buffer stock in case of liquidity problems and its association with
239 cost to income is related to the lack of its productive usage in a situation of excess liquidity standing. The CAR
240 is also strongly but negatively related to PRTL, XEFF and NIITI. But the coefficient is modest with regard to
241 NIITI. The association basically emanates from the pressure of high nonperforming assets (high risk scenario) on
242 capital cushion, challenge to manage and plan capital usage in excess liquidity and under regulatory involvements
243 scenario as well as the limited effect of capital to create non-interest income despite its notable contribution to
244 boost the currency holding position of banks.

245 Similarly, the asset quality measure (PRTL), is negatively associated with most of dependent and explanatory
246 variables. The association could not be a surprise considering the impact of a problem asset stock on most of
247 profitability, price and liquidity measures. The rationale behind such relationship lies on the impact of credit risk
248 on the cost of credit through affecting provision expenses, narrowing intermediation margin through affecting the
249 interest recognition from loans and tiding the flow of funds from loan collections as a result of default and/or late
250 payments. Another important relationship derived from the correlation table is that the negative and significant
251 relationship between LATD with both profitability and efficiency measures. This is in line with the argument that
252 liquidity establishes a trade off with profitability through resulting in a relationship where an increase in liquidity
253 impacts profitability to the negative through limiting the share of productive assets in the portfolio of the Bank.
254 Therefore, balancing such trade-off through maintaining an adequate liquidity level without compromising the
255 profitability opportunity through efficient use of funds remain a challenge to be tackled by Banks management.
256 An ineffective use of fund therefore not only affects the profit level but affects the efficiency level of banks through
257 affecting the cost of idle fund.

258 Overall speaking, the correlations among the independent variables are not high (less than 0.50), indicating
259 that there might be no serious Multicollinearity problems existing. Gujarati and Porter (2009) suggest that if the
260 pair-wise correlation coefficient between two independent variables is in excess of 0.8, then multicollinearity is a
261 serious problem. Therefore, considering the correlations among variables and the tests in the following sections,
262 the models to test the hypothesis are built.

263 **12 e) Outliers and Missing Values**

264 Before applying the econometrics models to the data, it is necessary to address the potential problem of outliers
265 and missing values as they may have an undesirable influence on the estimates produced by the regressions. A
266 univariate statistics showing summary for missing and extreme values is computed. The result shows that there
267 are no missing values that are likely to lower the quality of panel date but the data for some variables holds
268 extreme values. For instance, the univariate statistics of variables presented in the table below shows that there
269 are six extreme values in the dependent variable, mainly related to the higher extreme. Therefore, in order to
270 reduce the potential bias caused by the outliers, the variables in the Models are winsorized 1 at the 5% and 95%
271 levels. In other words, the top and bottom 5% values of CR% are replaced by the value at the 5th and 95th
272 percentiles, respectively. Therefore, the winsorized output is used as the dependent and explanatory variables
273 for the Models. This is justifiable in consideration of uneven financial records of banks during the early year
274 of entrance to the industry. Newly formed banks usually show a lower profitability record resulting from high
275 capital expenditure for establishment costs, branch expansions, IT investments, low level of asset portfolio and
276 income.

277 **13 f) Tests of Stationarity**

278 Graphical Observation of the variables shows that the variables selected don't exhibited nonstationarity. Further
279 test based on a mathematical approach is done applying the Fisher Type unit root test which is based on the
280 Augmented Dicky-Fuller tests. The Fisher Type appears more pertinent considering the unbalanced data stock
281 on panel. Therefore, the basis hypothesis H_0 : All panels contain unit roots is tested and the result witnessed
282 that all variables are stationary at zero ADF. Therefore, the variables can be used in the model without being
283 differenced or further action.

284 **14 V. Results and Discussions**

285 Before running the model both normality and panel unit root tests were conducted. The normality test through
286 kurtosis and skewness witnesses the normality of the data as shown in the below table, both the F-test and the LM
287 test with large chi-square result rejects the null hypothesis. Hence, the fixed and random effect models appear
288 better than pooled OLS. The Hausman test taking the coefficients of the fixed and random models tests the
289 null hypotheses that H_0 : difference in coefficients not systematic. The chi-square result is 1 There are different
290 ways of dealing with outliers, such as winsorisation, exclusion, or retention. In this study, since the number of
291 observations is not large, and the extreme values are likely to seriously bias the estimates, either exclusion or
292 retention seems to be inappropriate. In this study, all winsorizing are done based on full sample rather than on
293 balanced sample i.e. on the 193 cases.

294 with probability lower than 0.05 rejects our initial hypothesis that the individual-level effects are adequately
295 modeled by a fixed-effects model in case of RoA but not in others. Therefore, the estimation result has been done
296 through the fixed effect model in the RoA model but random effect model is applied in RoE and NIM models.

297 As shown in the table below among the identified six bank specific determinant factors and applied to model
298 1 (RoA) four of them were significant and considered to be drivers of the banks' profitability. More, specifically,
299 with regard to the coefficients on the independent variables, CAR remains significant in all the models where
300 it acts as a regressor, suggesting that the ratio of capital to asset has a statistically significant impact on bank
301 profitability and price performances. The unexpected result is that the direction of impact provides a mixed
302 result where the CAR has been found to positively relate to RoA and NIM but remained negative in case of RoE.
303 The negative relationship with RoE however is expected in consideration of the relative impact of capital building
304 on the earning measure through diluting the earning to equity position of banks. Therefore, the growth rate in
305 capital should follow the proportional growth in the earning base of banks. Otherwise, obstruction on capital
306 planning from internal and external forces potentially result in a counter impact on the RoE of banks. Considering
307 the sporadic involvement from the regulator in setting the requirement of entry as well as capital threshold for
308 banks already in the business, the impact of capital on earning position remained negatively affecting RoE. This
309 obviously will be severe for banks which already are operating at a capital level in excess of their asset holdings
310 and/or are managing to operate under limited growth of earning as compared to their growth in their capital
311 level. On the other front, the positive relation of CAR with RoA and NIM is much related with the notable
312 impact of a high level of capital on business expansion through increasing the capacity of banks to achieve large
313 credit extension for a single borrower and boosting their capacity to hold an increased foreign currency holdings.
314 This will be very relevant to the Ethiopian banking industry where the lending decision to single borrower, 25% of
315 capital (Directives SBB/53/12) and foreign currency positions, 15% of capital (Directives SBB27/01) are directly
316 attached with the capital level by regulations. This has been an important driver for banks to operate under a
317 relatively excess capital level with a motive to register a rapid balance sheet expansion. This has assisted to boost
318 the earning position of banks through directing their activity to a high growth-high earning scenario and without
319 worrying much about liquidity shortfall. This however, has not adequately covered the negative impact of capital
320 on their RoE (or earning per share) which doesn't seem a worry to the banks until recent period considering
321 the high earning per share and dividend offering of the Ethiopian banks. This benign regime however might
322 not sustain in the forthcoming as banks are stipulated to operate under a capital level beyond their expectation
323 and the gradual slowdown in their earnings growth due to a growing competition and regulatory tightening.
324 Therefore, to some extent capital planning remains to be one of critical bank specific determinants warranting
325 management intent in the process to discharge their obligations to various stakeholders, most importantly of the
326 shareholders. This has been one of several reasons enforcing banks management to capitalize on a business mix
327 through focusing noninterest income sources.

328 On the other hand, the commonly used proxy metrics to measure asset quality, PRTL, has been positive
329 but insignificant in the RoA model and witnessed significant and negative relationship with RoE model. The
330 model related to price (NIM) similarly shows negative and insignificant relationship with PRTL. As shown in the
331 trend and descriptive statistics, the aggregate PRTL level is towards a positive track record revealing the banks
332 remarkable achievement in maintaining a healthy asset portfolio through in placing control on the level of their
333 nonperforming asset. This has been not only an internally driven strategy but supported by enforcement from the
334 regulator which insisted banks not to hold nonperforming assets beyond 5% of their loan portfolio, a high risk asset
335 component. Therefore, the low level of PRTL record observed in most banks in the industry succeeded to establish
336 a positive relationship with the earning position of banks through controlling the cost of asset mismanagement as
337 shown in low rate of provision expenses as compared the loan portfolio. In other words, the effect of provision for
338 problem assets has limited impact on profitability performances justifying for the insignificant relationship with

339 the RoA and RoE. Nevertheless, the mixed outcome with regard to the direction of impact mostly relates to the
340 differences in the sensitivity of the base at which the two ratios are computed i.e. asset and capital. Banking is
341 a highly leveraged business with most of its sources of businesses relies highly on liability from customers than
342 shareholders investments leading to hold asset level far exceeding the capital invested by its shareholders. Such
343 scenario potentially has put banks capital more sensitive to earning disorder from asset quality related problems
344 as compared to the level of banks. This can be easily justified if one considers the coefficient values of PRTL in the
345 two models. In contrast, the pricing measure establishes a negative and significant relationship with PRTL due to
346 the double effect of non-performing assets on net yield from intermediation activity. On one front, nonperforming
347 assets potentially reduces the level of interest income from lending business through restricting the earning from
348 problem assets. This is because income recognition from problem assets is not allowed unless the asset is backed
349 by cash and cash substitute collateral (Directives SBB/43/08). On the other front, problem assets will bring
350 additional costs in the form opportunity cost of unproductive use of interest bearing deposits besides the demand
351 to set aside provision based on the classification level of the problem asset. Therefore, the double side impact
352 results in a narrow interest income that provides a narrow interest margin justifying a negative relationship of
353 PRTL with NIM.

354 The other measure applied to assess banks' capacity to ensure a diversified income sources through establishing
355 appropriate level of business mix, NIITI remained a significant driver of profitability measure. Nevertheless, it
356 has insignificant effect on the price related performances. The direction of relationship, however, is positive in all
357 models considered. The established relationship goes well with the a priori assumption due to the obvious effect
358 of a diversified and hence increased income bases on the gross income and profit level of banks. In addition, the
359 macroeconomic framework of the country remained suitable for banks to generate a substantial income in their
360 foreign trade offerings granting a liberty to set charges of their discretion for their international banking services
361 and during currency selling. The liberty of charging basically emanates from the shortage in the availability of
362 foreign currency due to high unmet demand from the business community that are engaged in import related
363 businesses. Therefore, a bank holding a reliable level of foreign currency obviously manages to easily convert its
364 foreign assets to fee based income and associated gain from currency conversions. Additionally, a high demand
365 in off balance sheet related services such as issuing guarantees and offering domestic banking services ensured
366 another source of fee based services increasing the income base of banks. The aforesaid services have contribution
367 not only on the income base of banks but on the overall risk portfolios through directing their activities on almost
368 risk free services bearing a lower impact to affect their income positions. The insignificant relationship with price
369 measure is basically is a result of a loose association between NIM, which is basically a measure of the yield
370 from intermediation business and NIITI which covers businesses exterior to the traditional banking engagements.
371 Therefore, NIITI is not much affected by a change in the price for earning assets and the cost of fund for deposits
372 as a result of its distinct pricing mechanism and limited use of locally mobilized deposits.

373 An important finding from the empirical result is that management's ability to control costs has a negative
374 impact in all the models. This suggests that in addition to banks' endeavor for boosting revenue through engaging
375 themselves in diversified businesses, their specific experience in managing expenses appears to be an important
376 factor in determining performance. More specifically, the COIN ratio established a statistically negative significant
377 relationship to the profit based models witnessing the fact that the cost of undertaking banking business is one
378 of the prominent variables requiring the managements' focus. Lack of proper cost control could potentially drain
379 profit of banks and its effect as revealed in the coefficient is much strong on RoE. This will be an important
380 finding of the study because it instigates management to have careful considerations on their cost of doing business
381 during critical cost driven decisions like expansions through branch network, IT investments, e-banking channels,
382 employment etc. On the other front, the study contributes a variable which can serve to assess management
383 performance during rating by the Board or the regulator which mostly prefers to do it applying simple ratios as
384 witnessed during the interview sessions. Such approach has an obvious drawback of aggregating costs potentially
385 hiding the effect of individual cost components through offsetting their under and over usage. Nevertheless,
386 the aggregate position serves as an initial start to look for the affixed cost management capacity in banks.
387 The COIN relationship with price measure, NIM, is insignificant which could be associated with the current
388 interest rating setting regime reigning in the system. The interest rate in both asset and liability side naturally
389 seems variable but in practice has a fixed nature due to limited variation in interest rate applied both lending
390 and deposit side. This has provided an opportunity for banks to run under a stable yield curve, hence, the
391 burden to manage expenses through price controls appear irrelevant or deserved a reduced merit justifying for
392 the insignificant relationship with the price related variable. Nevertheless, the negative relationship provides
393 indication an existing concern to manage costs through controlling factors that have implication on both cost
394 and income. Such factors as discussed above include maintaining healthy asset portfolio, managing deposit
395 mixes, etc. among others. Supporting this argument, the managerial efficiency measure, the XEFF, shows that
396 performance of some banks could be improved through increasing the efficiency of management. The established
397 relationship in some models, however, is not statistically significant that indicates a homogenous management
398 approach. However, as shown in previous section and suggested in the interview, managerial efficiency is one
399 of the area deserving improvement and to be considered for building competitive advantage in the Ethiopian
400 banking system.

401 On the liquidity front, a mixed result has been witnessed in the three models with a negative relationship record

402 in the RoA and NIM models and a positive relationship with RoE. This is in line with the literature where the
403 impact of liquidity is reflected depending upon the usage of liquidity to optimize the liquidity-profitability trade
404 off. Surplus liquidity holding ensures a comfortable status to meet commitments at ease but drains profitability by
405 increasing vulnerability to growing expenses on excess fund holding. As indicated in the descriptive statistics, the
406 Ethiopian banks are mostly characterized by surplus liquidity holdings maintaining a liquid asset level far above
407 required by the regulatory standard. Therefore, the impact of such norm has negatively affected profitability
408 measures as well as placed a pressure on the productivity of their intermediation businesses. This is a signal
409 for the lack of in-placed strong liquidity management that can ensure an optimum usage of funds. As shown in
410 the models, the impact of the above constraint has been significant on both profitability and price performance
411 sides with notable exceptions on the RoE model. The explanation for the exception is in relation to the reduced
412 pressure arising from surplus liquidity on the capital planning of banks. Planning for capital growth, therefore,
413 appears much slower in circumstances of excess liquidity unless it is driven by exceptional business motive and
414 fulfilling regulatory requirements. This remains an important finding of the study indicating that banks in the
415 Ethiopia still have a way to boost their earnings not only aiming at further expansions but also ensuring their
416 capacity to establish a liquidity-profitability trade off. In addition, their liquidity position among several factors
417 could be considered as an important variable in their capital growth decisions.

418 The residual statistics shows the error term has a normal distribution with a mean of 0. Hence, the normality
419 assumption holds. The results from the VIF table suggest that VIF is not greater than 10 for any of the
420 explanatory variables. The Breusch-Pagan / Cook-Weisberg test for heteroskedasticity test shows that at 5%
421 level of significance, the p-value is higher showing that heteroskedasticity is not significant in the model. The
422 small value of chi-square also supports the constant variance of the error term. The result has shown that the
423 D-statistic (1.273) appears closer but lesser than 2 depicting positive correlation. As suggested by Field (2009),
424 values less than 1 or greater than 3 are a cause of concern. Hence from Field's rule of thumb it can be inferred
425 that autocorrelation is not serious.

426 15 VI. Conclusions

427 Concerning the third research question: 'How do bank specific factors relate to bank performance' the study
428 explored that most of the proxies to measure bank specific factors are significantly related to performances.
429 Therefore, the result rejects the null hypothesis that bank specific factors have no impact on bank performances.
430 The constructed model has used the CAMEL framework which is a widely used supervisory tool to measure
431 bank performances. The result shows that the capital adequacy ratio (CAR) remains significant in all the models
432 suggesting statistically significant relationship with bank profitability and price performances. Nevertheless, the
433 direction of impact is mixed where the CAR has been found to positively related to RoA and NIM, but remained
434 negative in the case of RoE. The mixed result appears justified in consideration of the multifaceted impact of
435 capital to asset ratio on performances. In one front, a higher capital to asset ratio improves profitability by
436 enhancing the banks' risk assimilation capacity and creating a reliable liquidity position. On the other hand,
437 it affects performances of banks as measured by the return on their equity as it places burden on banks via
438 setting an expectation for management to match the growth in profit in line with the capital holdings. On the
439 other front, the quantitative study finds a positive and insignificant relationship of the asset quality (PRTL)
440 with RoA, but witnessed significant and negative relationship with RoE. The model related to price (NIM),
441 similarly shows negative and insignificant relationship with PRTL. The qualitative study, however, identified
442 that asset quality remains an important determinant of bank profit and price performances as problem assets
443 directly affect the profit performance demanding for equivalent provision expense holdings. In addition, they
444 affect prices by drawing down the earnings from granted loans. From the mixed result of the two studies, the
445 research concludes that the low asset quality problem in most banks has concealed the potential impact of asset
446 problem on performances. In addition, the study suggests the use of the actual rate of nonperforming loan ratio
447 instead of the proxy provision to total loans in future researches attempting to investigate the impact from asset
448 quality problems. This study has used the proxy measure as nonperforming assets related data are not publicly
449 available due to confidentiality. Nevertheless, the mixed outcome with regard to the direction of impact mostly
450 relates to the differences in the sensitivity of the base at which the two ratios are computed i.e. asset and capital.

451 Another important finding of this study is that banks' capacity to ensure a diversified business mix (NIITI)
452 remained a significant driver of profitability measure. Nevertheless, it has insignificant effect on the price related
453 performances. The direction of relationship, however, is positive in all models considered. As shown above, the
454 proxy variable not only appears as a significant driver of performance but is also a major source of efficiency. This
455 arises from the double edge impact of a diversified business to ensure an enhanced income base and its positive
456 contribution to maintain quality asset portfolio.

457 The empirical result also shows that management's ability to control costs (COIN) has a positive impact in
458 all the models showing that in addition to banks endeavor for boosting revenue through engaging themselves
459 in diversified businesses, their specific experience in managing expenses appears to be an important factor in
460 determining performance. Nevertheless, the qualitative study shows that cost control should be supported
461 by an optimum expense management strategy that ensures a balance to meet both short-term and long-term
462 goals. Unlike the above finding, the managerial efficiency variable (XEFF), established a statistically positive
463 relationship with performances showing that performance of some banks could be improved through increasing

464 the efficiency of management. The established relationship in the models however is not statistically significant.
 465 The result appears unexpected, but explained in the qualitative study on the ground that the tight regulatory
 466 framework which discourages risk taking in banking business apart from traditional and common banking
 467 endeavors has limited to use top management experience in innovative practices. Furthermore, regulation has
 468 also taken the critical role of management in some cases such as strategy setting that establish areas and modes
 469 of bank growth. However, there is a suggestion from bank managers for improvement in managerial efficiency
 470 allowing the freedom to be used as a competitive tool.

471 Banks' ability to maintain a reliable liquidity position (LADP) witnessed a mixed result in the models: a
 472 negative and statistically significant relationship with the RoA and NIM models and a positive statistically
 473 insignificant relationship with RoE. Nevertheless, the finding is justified as excess liquidity standing could reduce
 474 the profitability of banks by exposing them to non-earning placements. Nevertheless, it can ensure better customer
 475 services to comfortably meet the credit demand of borrowers. The important finding of this study replicating
 476 the findings in literature is that banks' decision with regard to liquidity should consider the trade-off between
 profitability and liquidity. This accepts the commonly accepted liquidity-profitability trade-off theory.

1

	VariableDefinition	Representation in CAMEL Category	Expected relationship
	Dependent		
ROA	Ability of a bank's management to generate profits from the bank's assets.		
ROE	The return to shareholders on their equity.		
NIM	Residual of interest income resulted from efficient decision making of management.		
	Independent		
CAR	Capital adequacy ratio-computed as percentage of capital to asset.	Capital Adequacy	+/-
PRTL	Provision to Loans-ratio of provision expenses to total loans.	Asset Quality	-
XEFF	Managerial efficiency measure using DEA scores.	Management	+
NIITI	Non-Interest Income to Total Income measures the share of earning from non-intermediation sources.	Earning	+
COIN	Cost to income-share of aggregate income from the total income.	Management	-
LATD	Liquid Asset to Total Deposit-the share of liquid asset from total deposit.	Liquidity	+/-

Source: Author's Computation

b) Data and Data Sources

Figure 1: Table 1 :

15 VI. CONCLUSIONS

2

Stats	ROE	ROA	NIM	CAR	PRTL	NIITI	XEFF	COIN	LATD
Mean	18.996	2.233	4.547 14.389 3.901			43.357	84.332	65.817	50.143
Max	90.820	5.250	10.160 54.464 28.972	76.687	100.000	89.231 137.705			
Sd	12.880	1.107	1.806	7.505	4.702	13.158	12.467	26.079	18.951
P50	18.318	2.420	4.400 12.385 2.451			42.457	84.975	61.285	47.397
Kurtosis	9.264	2.724	2.916	9.644	10.855	2.812	4.954	17.553	4.920
Skewness	1.684	-0.309	0.263	2.069	2.554	0.042	-0.916	3.315	0.997
P75	24.806	2.999	5.633 17.364 4.637			52.151	94.656	71.771	60.796
OBS	193	193	193	193	193	193	193	193	193

Source: Author's Computation (STATA 12)

Figure 2: Table 2 :

3

							Correlations		
							NIM	CAR	PRTL
ROE	Pearson Correlation	Sig.	(2-tailed)	1					
ROA	Pearson Correlation	Sig.	(2-tailed)	.652 ** .000	1				
NIM	Pearson Correlation	Sig.	(2-tailed)	-.143 * .047	.023	1			
CAR	Pearson Correlation	Sig.	(2-tailed)	-.520 ** -.165 * .000	.022	.344 ** .000	1		
PRTL	Pearson Correlation	Sig.	(2-tailed)	.122 .090		-.168 * -.244 ** -.435 ** .020	.001 .000	1	
NIITI	Pearson Correlation	Sig.	(2-tailed)	.129 .074	.309 ** .000	.019 .793	.018 .799		1
XEFF	Pearson Correlation	Sig.	(2-tailed)	.194 ** .007	.147 * .042	-.036 -.238 ** .269 ** .624 .001	.000 .000		.09
COIN	Pearson Correlation	Sig.	(2-tailed)	-.621 ** -.736 ** .000	.000	.138 .055	.510 ** .000		.031
LATD	Pearson Correlation	Sig.	(2-tailed)	-.283 ** -.239 ** .000	.001	.118 .101	.501 ** .000		.095

[Note: ** Correlation is significant at the 0.01 level(2-tailed). N=193, * Correlation is significant at the 0.05 level(2-tailed) Source: Author's Computation(SPSS 20)]

Figure 3: Table 3 :

	N	Mean	Std. Deviation	Missing	Count	Percent	No. of Extremes
RoE	193	18.9962	12.87965	0	.0	0	6
RoA	193	2.2333	1.10661	0	.0	0	1
NIM	193	4.5473	1.80649	0	.0	0	1
CAR	193	14.3889	7.50490	0	.0	0	11
PRTL	193	3.9012	4.70174	0	.0	0	18
NITI	193	43.3567	13.15770	0	.0	1	0
XEFF	193	84.2089	12.55139	0	.0	2	0
COIN	193	65.8174	26.07931	0	.0	0	8
LATD	193	50.1431	18.95113	0	.0	0	4

a. Number of cases outside the range (Q1 -1.5*IQR, Q3 + 1.5*IQR)

[Note: Source: Author's Computation(SPSS 20)]

Figure 4: Table 4 :

	Model 1	Model 2	Model 3
RoA		RoE	NIM
CAR	.0522522 (0.0000)*	-.5180715 (0.0010)*	.0814718 (0.0050)*
PRTL		-.445118 (0.0019)*	-.0199116 (0.5820)
NIITI	.0295337 (0.0000)*	.1060527 (0.0125)*	.0006569 (0.9600)
XEFF	.0108347 (0.0538)	-.0570724 (0.3770)	.663684 (0.5520)
COIN	-.034499 (0.0000)*	-.2449508 (0.0000)*	-.00000826 (0.8980)
LATD	-.5186258 (0.0570)	.0181338 (0.0721)	-.0054677 (0.5710)
CONS	-4.167119 (0.0000)*	42.79821 (0.0000)*	3.277389 (0.0150)*
Adjusted	62.8%	45.05%	42.5%
R2			
Walid		152.72 (0.0000)*	54.8 (0.000)*
Chi2			
F(6,168)	57.1 (0.0000)*		
F-test	2.88 (0.0003)*	5.5 (0.0000)*	2.66 (0.0000)*
LM test	4.62 (0.0315)*	54.33 (0.0000)*	9.6 (0.0019)*
Hausman	216.3 (0.0000)*	8.24 (0.2143)	1.32 (0.4532)
Chi2			
Rho	(Fraction of variance due to u_i)	.14795143	.14163641

Source: Author's Computation (STATA12)

Figure 5: Table 5 :

478 [Kumbirai and Webb (2010)] 'A financial Ratio Analysis of Commercial Bank Performance in South Africa'. M
479 Kumbirai , R Webb . *African Review of Economics and Finance* 2010. Dec 2010. 2 (1) p. .

480 [Nachane and Ghosh ()] 'An Empirical Analysis of the Off-Balance Sheet Activities of Indian Banks'. D Nachane
481 , S Ghosh . *Journal of Emerging Market Finance* 2007. 6 p. .

482 [Berger and Bouwman ()] 'Bank liquidity creation'. A Berger , C Bouwman . *Rev Financ Stud* 2009. 22 p. .

483 [Rose and Hudgins (ed.) ()] *Bank Management and Financial Services*, 8e, P Rose , S Hudgins . McGraw
484 Hill/Irwin. Rosse, J. and J. Panzar (ed.) 2010. 1977.

485 [Gujarati and Porter ()] *Basic Econometrics*, D Gujarati , D Porter . 2009. New York, McGraw-Hill. (5 th
486 edition)

487 [Chamberlin vs. Robinson, an Empirical Test for Monopoly] *Chamberlin vs. Robinson, an Empirical Test for
488 Monopoly*,

489 [Bourke ()] 'Concentration and Other Determinants of Bank Profitability in Europe'. P Bourke . *Journal of
490 Banking and Finance* 1989. 13 p. . (North America and Australia)

491 [Nassreddine et al. ()] 'Determinants of Bank Performance: Viewing Test by Cognitive Mapping Technique a
492 case of Biat'. G Nassreddine , S Fatma , J Anis . *International Review of Management and Business Research*
493 2013. 2 (1) p. 2035.

494 [Demirguc-Kunt and Huizinga ()] 'Determinants of commercial bank interest margin and profitability: some
495 international evidence'. A Demirguc-Kunt , H Huizinga . *World Bank Economic Review* 1999. 13 (2) p. .

496 [Ongore ()] 'Determinants of financial performance of commercial banks in Kenya'. V Ongore . *International
497 Journal of Economics and Financial Issues* 2011. 3 (1) p. .

498 [Altunbas et al. ()] 'Efficiency in European Banking'. Y Altunbas , E Gardener , P Molyneux , B Moore .
499 *European Economic Review* 2001. (45) p. .

500 [Lhomovich ()] *Factors Affecting the Performance of Foreign Banks in Malaysia Master of Science (Banking),
501 College of Business (Finance and Banking)*, S E Lhomovich . 2009. University Utara Malaysia

502 [Al-Tamimi and Hassan ()] *Factors Infuluncing Performance of the UAE Islamic and Conventional National
503 Banks. Department of Accounting, Finance and Economics*, H Al-Tamimi , A Hassan . 2010. College of
504 Business Administration, University of Sharjah

505 [Diamond ()] 'Financial Intermediation and Delegated monitoring'. D Diamond . *Review of financial Studies*
506 2000. 51 p. .

507 [Rahman et al. ()] 'Lending Structure and Bank Insolvency Risk: A Comparative Study between Islamic and
508 Conventional Banks'. Aisyah Rahman , Abdul , Ibrahim Mansor , Meera . *Journal of Business & Policy
509 Research* 2009. 4 (2) p. . (Ahamad Kameel Mydin)

510 [Allen and Carletti ()] 'Mark-to-Market Accounting and Liquidity Pricing," forthcoming'. F
511 Allen , E Carletti . [finance.wharton.upenn.edu/%7Eallenf/download/Vita/
512 Allen-Carletti-MMA-200706-final.pdf](http://finance.wharton.upenn.edu/%7Eallenf/download/Vita/Allen-Carletti-MMA-200706-final.pdf) *Journal of Accounting and Economics* 2008.

513 [Rogers ()] 'Non-traditional Activities and the Efficiency'. E Rogers . *Journal of Banking and Finance* 1998. 22
514 (4) p. .

515 [Altunbas et al. ()] 'Ownership and efficiency in banking'. Y Altunbas , L Evans , P Molyneux . *Journal of
516 Money, Credit and Banking* 2001. 33 (4) p. .

517 [Said and Tumin ()] 'Performance and Financial Ratios of Commercial Banks in Malaysia and China'. R M Said
518 , M H Tumin . *International Review of Business Research Papers* 2011. 7 (2) p. .

519 [Samad ()] 'Performance of interest-free Islamic banks vis-a-vis interest-based conventional banks of Bahrain'. A
520 Samad . *Journal of Economics and Management* 2004. 12 (2) p. .

521 [report of various times accessed at www.nbe.gov.et 19. National Bank of Ethiopia various Directives accessed at www. nbe.gov.et
522 report of various times accessed at www.nbe.gov.et 19. National Bank of Ethiopia various Directives accessed
523 at www. nbe.gov.et: Directives, SBB27/01. National Bank of Ethiopia Annual

524 [Dang ()] *The CAMEL Rating System in Banking Supervision: a Case Study of Arcada University of Applied
525 Sciences*, U Dang . 2011. (International Business)

526 [Mishkin ()] *The Economics of Money, Banking, and Financial Markets*. Addison-Wesley series in economics,
527 Mishkin . 2001.

528 [Berger ()] 'The profit-structure relationship in banking, Tests of market-power and efficientstructure hypotheses'.
529 A Berger . *Journal of Money, Credit and Banking* 1995. 27 (2) p. .

530 [Liu and Wilson ()] 'The profitability of banks in Japan'. H Liu , J Wilson . *Applied Financial Economics* 2010.
531 20 p. .