

1 The Stock Market Volatility and Regime Changes: A Test in 2 Econometrics

3 Amaresh Das¹

4 ¹ University of New Orleans

5 *Received: 14 December 2016 Accepted: 1 January 2017 Published: 15 January 2017*

6 **Abstract**

7 This paper applies the Markov switching heteroscedasticity model to stock return for India.
8 The Markov switching model in our study takes into account the chance of regime shift, a
9 possibility outside the purview of the GARCH model. Our finding tells us that the high
10 variance of the transitory component tends to be short lived. Although parameters estimating
11 the impact of time-varying expected returns and the delivery system are in some cases
12 qualitatively different between the regimes, the differences do not produce significant changes
13 in our model of stock returns.

16 **Index terms**— arch process, garch process, markov switching.

17 **1 Introduction**

18 Although the ARCH process controls the short-run dynamics of stock return, the long-run dynamics are controlled
19 by regime shifts in unconditional variance, while an unobserved Markov switching process drives the regime
20 changes. ??amilton and Susmel (994) propose a switching ARCH model in which they allow the parameters
21 of the ARCH process to come from one set of several different regimes. 1 Regime switching models can match
22 the tendency of financial markets to often change their behavior abruptly and the phenomenon that the new
23 behavior of financial variables often persists for several periods after such a change. While the regimes captured
24 by regime switching models are identified by an econometric procedure, they often correspond to different periods
25 in regulation, policy, and other secular changes 2,3 t u Suppose the variable is governed by $t t v u ? = (1)$
26 Where $\{ v t \}$ is an i. i. d sequence with zero mean and unit variance. The conditional variance of $t u$ is
27 specified to be a function of its past realization $g = 2$?
28 $(2 - t t u , u 1 ? \dots) (2) ? + ? = = = p 1 i 2 1 - t q 1 i t u a 2 ? 2 t i b 2 ? ? (3)$
29 This is a Gaussian GARCH (q p

30) specification introduced by Belterstev (1986). When $p = 0$ it becomes ARCH (q) specification of Engle
31 ??1982). The popular approach to modelling stock volatility is the autoregressive conditional heteroscedasticity
32 (ARCH) specification introduced by these authors. These authors argue that the variance ratio test that is
33 often used for analyzing mean reversion 4 may need to be Author: Professor, Business, Southern University at
34 New Orleans & Mathematics, University of New Orleans. e-mail: adas2@cox.net 1 Contagion plays a crucial
35 role in the short-term transmission of a currency crisis. Its effects rely primarily on liquidity effects experienced
36 by international investors. Thus, the drop in asset values after the Russian crisis represented a capital loss for
37 investors, with the ensuing liquidity problems being countered by a reallocation of their respective portfolios 3 The
38 notion of regimes is closely linked to the familiar concept of good and bad states or states with low versus high risk,
39 but surprising and somewhat counterintuitive results can be obtained from equilibrium asset pricing models with
40 regime changes. Conventional linear asset pricing models imply a positive and monotonic risk-return relation.
41 In contrast, changes between discrete regimes with different consumption growth rates can lead to increasing,
42 decreasing, flat or nonmonotonic risk-return relations as shown by, e.g., Backus and Gregory (1993), ??hitelaw
43 (2000), ??ng and Liu (2007), and Rossi and Timmermann (2011). 4 After the seminal studies by Summers (1986),
44 ??oterba & Summers (1988), an ongoing debate has emerged in the literature as to whether stock prices and

3 THE MODEL

45 stock returns are mean-reverting or not. The substantial amount of recent publications in this field (Goyal &
46 Welch 2008, Spierdijk et al. (2012) illustrates that the meanreverting behavior of stocks is still an important
47 issue 2 For example, interest rate behavior markedly changed from 1979 through 1982, during which the Federal
48 Reserve changed its operating procedure to targeting monetary aggregates. Other regimes identified in interest
49 rates correspond to the tenure of different Federal Reserve Chairs..

50 2 Keywords: arch process, garch process, markov switching.

51 Abstract-Often it is assumed that $u_t \sim N(0, 1)$ and that $g(\cdot)$ depends linearly on the past squared realization of
52 u_t . modified to take into account the changes in variance due to changes in regimes 5 II.

53 3 The Model

54 .The cause of the debate lies in the fact that testing for mean reversion is inherently difficult due to a lack of
55 historical data on stock prices. Accurate estimation of the degree of long-run mean reversion requires very long
56 stock price series, which are not available. For example, if stock prices were to revert back to their fundamental
57 value every twenty years, one would need at least 1,000 to 2,000 yearly observations to obtain reliable estimations.
58 Moreover, the likely structural breaks during long sample periods further complicate statistical analysis of mean
59 reversion (Spierdijk et al. 2012). These methodological difficulties explain why mean reversion is a controversial
60 issue in the economic literature.

61 Analyses suggest that the speed at which stocks revert to their fundamental value is faster in periods of high
62 economic uncertainty, caused by major economic and/or political events. The highest mean reversion speed is
63 found for the period including the Great Depression and the start of World War II. Furthermore, the early years
64 of the Cold War and the period containing the Oil Crisis of 1973, the Energy Crisis of 1979 and Black Monday
65 in 1987 are also characterized by relatively fast mean reversion.

66 We will to begin with assume that the return series is drawn from a mixture of normal distributions as in
67 Kim and Nelson(1998). These authors have shown that the Markov switching heteroscedasticity model of stock
68 return is a good approximation of the underlying data generating process. This leads us to formulate the return
69 series as follows: $t_t \sim N(\mu_t, \sigma_t^2)$ where $\mu_t = \alpha_0 + \alpha_1 t_{t-1} + \alpha_2 t_{t-2} + \dots + \alpha_{10} t_{t-10}$
70 $\sigma_t^2 = \beta_0 + \beta_1 t_{t-1} + \beta_2 t_{t-2} + \dots + \beta_{10} t_{t-10}$ **(6)**

71 Where $N(\mu, \sigma^2)$ is a normal distribution with mean μ and variance σ^2

72 In this model we use t to represent the temporary part of the return and not the prices directly.

73 We include t simply reflecting the fact that the temporary component of the return could be auto correlated.
74 The parameters α and β help us identify any shift in variance during periods of uncertainty. The estimation
75 of this model would allow us to comment on the time series behavior of the return volatility and how this is
76 influenced by the switching probability of the transition component.

77 The two Markov switching variables are independent of each other and the respective transition probabilities
78 are defined as. $(\text{prob}(t_{t-1} = 0, t_t = 0) = \alpha_0 + \alpha_1 t_{t-1} + \dots + \alpha_{10} t_{t-10})$ **(8)** $(\text{prob}(t_{t-1} = 1, t_t = 0) = \alpha_1 + \alpha_2 t_{t-1} + \dots + \alpha_{11} t_{t-10})$ **(9)**
79 $(\text{prob}(t_{t-1} = 0, t_t = 1) = \beta_0 + \beta_1 t_{t-1} + \dots + \beta_{10} t_{t-10})$ **(10)** $(\text{prob}(t_{t-1} = 1, t_t = 1) = \beta_1 + \beta_2 t_{t-1} + \dots + \beta_{11} t_{t-10})$ **(11)**

80 In order to estimate such a model that involves unobserved components and is subject to Markov switching
81 shocks, we use the procedure used by Kim and Nelson. (1999). 6 This involves generating a probability weighted
82 likelihood function and a recursive algorithm to update the probabilities as new observations become available.
83 This has been written with computer programming in mind. The parameters to be estimated are, therefore, The
84 Stock Market Volatility and Regime Changes: A Test in Econometrics 5 The standard sensitivity analysis shows
85 that the choice of the variance ratio may have substantial impact on investment decisions. If the variance ratio is
86 high -meaning that stock prices are strongly mean-reverting -stocks become relatively less risky in the long run,
87 making it optimal to invest a relatively large share of wealth in stocks. However, if the true variance ratio is lower
88 than the assumed value, the perceived risk exposure is lower than the actual risk exposure. Hence, too much
89 wealth is allocated to stocks, resulting in a non-optimal overexposure to risk. 6 The Markov switching ARCH
90 features and Markov switching autoregressive features could, in principle, be combined into a single univariate
91 specification, through using such a large set of parameters to describe the non-linear dynamics of a single series
92 might pose numerical problems for finding a global maximum of the likelihood function. Moreover, given the
93 limited predictability of stock returns, it is surely a mistake to overparameterize the mean. By the same token,
94 evidence of the ARCH effects in industrial production is rather weak. By contrast, the tendency of stock market
95 volatility (as distinct from the mean) to exhibit variation and the periodic shifts in mean output growth associated
96 with economic recessions, are fairly significant and well-documented features of these two series The goal of the
97 paper is not to capture the nature of the link between a process for industrial production and a process for stock
98 returns.

99 $[\alpha_0, \alpha_1, \dots, \alpha_{10}, \beta_0, \beta_1, \dots, \beta_{10}]$ **(12)**

100 The stock price index is obtained from the Morgan Stanley Capital International Index, MSCI's All Country
101 World Index (ACWI) is the industry's accepted gauge of global stock market activity. Composed of over 2,400
102 constituents, it provides a seamless, modern and fully integrated view across all sources of equity returns in 46

104 developed and emerging markets. The company has used eight factors in developing its indexes: momentum,
105 volatility, value, size, growth, size nonlinearity, liquidity and financial leverage.
106 The rate of return on stocks for India is calculated as $x_t = (1 - t_t P_t - P_t) \times 100 / 1 ? t P_t$
107 where $t P_t$ IV.

108 4 Results

109 Table ???.2 shows the parameter estimates of the Markov switching heteroscedasticity model for the sample for
110 our given time 7 . The results are computed using the algorithm used by Kim and Nelson (1998). The initial
111 values for the filter are obtained from the observations on January 1980 ending through December 1980.

112 The Stock Market Volatility and Regime Changes: A Test in Econometrics 7 A key issue in regime switching
113 models is whether the same regimes repeat over time, as in the case of repeated recession and expansion periods,
114 or if new regimes always differ from previous ones. If "history repeats" and the underlying regimes do not change,
115 all regimes will recur at some time. With only two regimes this will happen if $0.00 p < 1, i = 0, 1$, Models with
116 recurring regimes have been used to characterize bull and bear markets, calm versus turbulent markets, and
117 recession and expansion periods. Alternative to the assumption of recurring regime is the change point process
118 studied in the context of dynamics of stock returns by Pastor and Stambaugh (2001) and Perez-Quiros, and
119 Timmermann, A (2012) This type of model is likely to be a good approximation of regime shifts related to
120 technological change. Our model has abstracted from such technological changes. Entries are P values for the
121 respective statistics. The residuals in the portmanteau test is that the residuals are serially uncorrelated. The
122 ARCH test residuals are for no serial correlation in the squared residuals up to lag 18. MNR is the Von Neuman
123 ratio test using recursive residuals for model adequacy. If the model is correctly specified then Recursive T has
124 a standard t-distribution. (Harvey (1990)). KS statistic represents the Kolmogorov Smirnov test statistic for
125 normality. 95% confidence level in this test is .071 When KS statistic is less than 0.071 the null hypothesis of
126 normality cannot be rejected at the given level of significance We also applied a pair of tests specifically designed
127 for the recursive residuals produced by the state space system used in in this study. The first, the modified Von
128 Neuman ratio, test against serial correlations of the residuals; the second, the recursive t test to check for correct
129 model specification. The adequacy of the model is overwhelmingly supported. ^{1 2}

¹© 2017 Global Journals Inc. (US)

²© 2017 Global Journals Inc. (US) 1

4 RESULTS

11

III. Data
and
Method-
ol-
ogy

Table 1.2: Permanent and Transitory
Equity Return (Markov Switching)

p
 P_{00}
 $q \mu 1110 ? ?$

Mean(%) Std dev Skewness Kurtosis JB Test 1.786 7.453 2.312 9.654 .0000 q
(0.3461) 0.3214 -(3,4571) 2 6.783

(1 ?) of the permanent component's
volatility regime is also significant.
find that the magnitude of the over-
permanent component during the
i.e., 0 ? + 1 ? says very little for

Figure 1: Table 1 . 1 :

13

Portmanteau	0.412
ARCH	0.333
KS	0.013
RB Test	0.041
MNR	0.889
Recursive T	0.771

Figure 2: Table 1 . 3 :

130 .1 Conclusion

131 We applied the Markov switching heteroscedasticity model to stock returns in India. The modelling approach
132 is superior to GARCH model. In particular, the Markov switching model explicitly considers the possibility of
133 regime switch whereas the GARCH model does not. In terms of our estimate the high variance state of the
134 transitory component lasts for an average of only 4 months.

135 [Goyal and Welch ()] 'A Comprehensive Look at the Empirical Performance of Equity Premium Prediction'. A
136 Goyal , I Welch . *Review of Financial Studies* 2008. 21 p. .

137 [Augmented Randomization Journal of Empirical, Finance] 'Augmented Randomization'. *Journal of Empirical,*
138 *Finance* 5 p. .

139 [Hamilton and Susmel ()] 'Autoregressive Conditional Heteroscedasticity and Changes in Regime'. J D Hamilton
140 , H Susmel . *Journal of Econometrics* 1994. 64 p. .

141 [Perez-Quiros and Andtimmermann ()] 'Business Cycle Asymmetries in Stock Returns: Evidence from Higher
142 Order Moments and Conditional Densities'. V 13 Perez-Quiros , G Andtimmermann , A . *Journal of*
143 *Econometrics* 2001. 103 p. .

144 [Summers ()] 'Does the Stock Market Rationality Reflect Fundamental Values?'. L H Summers . *Journal of*
145 *Finance* 1986. 41 p. .

146 [Spierdijk et al. ()] 'Mean Reversion in InternationalStock Markets: An Empirical Analysis of the 20th Century'.
147 L Spierdijk , J A Bikker , P Van Den Hoek . *Journal of InternationalMoney and Finance* 2012. 31 p. .

148 [Porterba and Summers ()] 'Mean Reversion in Stock Prices Evidence and Implications'. J Porterba , L Summers
149 . *Journal of Financial Economics* 1998. 22 p. .

150 [Kim and Neslon ()] *State Space Models with Regimes Switching Classical and Gibbs Sampling Approaches with*
151 *Applications*, C J Kim , C Neslon . 1999. Cambridge, Massachusetts: The MIT Press.

152 [Whiteli ()] 'Stock Market Risk and Return: An Equilibrium Approach'. R Whiteli . *Review of Financial Studies*
153 2000. 13 p. .

154 [Ang and Bekaert ()] 'Stock Return Predictability: Is it There?'. A Ang , G Bekaert . *Review of Financial Studies*
155 2007. 20 p. .

156 [Kim and Nelson ()] *Testing for Mean Reversion in Heteriscedasticity Data II Auto Correlation Tests Based on*
157 *Gibbs-sampling*, C Kim , C Nelson . 1998.

158 [Harvey ()] *The Econometric Analysis of Time Series*, A Harvey . 1990. Cambridge: The MIT Press. (second
159 edition)

160 [Pastor and Stambaugh ()] 'The Equity Premium and Structural Breaks'. L Pastor , R Stambaugh . *Journal of*
161 *Finance* 2001. 56 p. .

162 [Backus and Gregory ()] 'Theoretical Relations between Risk Premium and Conditional Variancres'. D Backus ,
163 A Gregory . *Journal of Business & Economic Statistics* 1993. 11 p. .

164 [Rossi and Timmermann ()] *What is the Shape of the Risk-Return Relation? Working paper*, A Rossi , A
165 Timmermann . 2011. UCSD.