

1 Multimarket Contact and Mergers and Acquisitions: The Cases
2 of Southwest Airlines and Airtran Airways in the US Airline
3 Industry

4 Ryota Asahi¹

5 ¹ Fukuyama Heisei University

6 *Received: 11 December 2016 Accepted: 1 January 2017 Published: 15 January 2017*

7

8 **Abstract**

9 Many studies have empirically shown that multimarket contact (MMC) has collusive effects in
10 the US airline industry. The US airline industry has recently undergone large changes. For
11 example, some airlines have implemented mergers and acquisitions (MA), while Low-cost
12 carriers (LCCs) have matured over time and developed according to multiple business models.
13 Few previous empirical studies of MMC have taken these changes into account. Thus, this
14 paper analyzes the impact of MA on the effects of MMC while taking into consideration the
15 presence of LCCs. We focus on Southwest's acquisition of Airtran Airways and estimate the
16 simultaneous demand and price equations using unbalanced panel data for the fourth quarters
17 of 2009, 2010, 2011, 2012, 2013 and 2014. We made three findings. First, MMC has collusive
18 effects on airlines' pricing in the US airline industry. Second, the effect of MMC on Southwest
19 Airlines' pricing did not increase after the acquisition of Airtran Airways. Third, Southwest
20 Airlines' rivals may show more collusive effects of MMC after an acquisition is made by
21 Southwest Airlines.

22

23 **Index terms**— some airlines have implemented mergers and acquisitions.

24 **1 Introduction**

25 multimarket contact (MMC) refers to a situation in which there are many inter-firm rivalries between a limited
26 number of firms in multiple markets. Many researchers have suggested that MMC leads to mutual forbearance
27 and weakens competition. In particular, MMC has had collusive effects in the airline industry. Some studies
28 have shown empirically that MMC causes increases in airfares and a decrease in the quality of services.

29 In this paper, we empirically analyze the impact of M&A on the collusive effects of MMC. This analysis focuses
30 on the acquisition of Airtran Airways by Southwest Airlines. We estimate the simultaneous equation system of
31 the price and demand function to analyze the changes induced in the effects of MMC by M&A. We made three
32 findings. First, MMC has a collusive effect on airfares. Second, the collusive effect of MMC on Southwest
33 Airlines did not change before and after its acquisition of Airtran Airways. Third, the collusive effects of MMC
34 on Southwest's rivals became weaker after the acquisition. These have the political implication that full-service
35 carriers (FSCs) may reinforce the collusive effect of MMC through M&A conducted by low-cost carriers (LCCs)
36 2 II.

37 **2 Literature Review**

38 . In section 2, we review the literature on MMC, M&A and LCCs. In section 3, we describe the econometric
39 model used in this study and our data. In section 4, we show the empirical results. In section 5, we state
40 our concluding remarks. Some studies have focused on MMC in the airline industry. Sandler (1988) showed

3 III. ECONOMETRIC MODEL AND DATA

41 that MMC intensified the competition in the US airline industry before the industry was deregulated. Evans
42 and Kessides (1994) demonstrated that MMC increased airfares in US airline industry using panel data from
43 1985 to 1988. Singal (1996) found that MMC caused 2 LCCs are airlines which keep operating expenses low
44 and set low airfares. M 1 Author: Fukuyama Heisei University, Faculty of Business Administration. e-mail:
45 asahi@heisei-u.ac.jp

46 In recent years, the airline industry has experienced many mergers and acquisitions (M&A). M&A decrease
47 the number of airlines and increase market concentration. As a result, many studies have empirically shown
48 that M&A weaken the intensity of competition in the airline industry. On the other hand, airlines may improve
49 their cost efficiency through M&A. Accordingly, some analyses have implied that M&A induce competition in the
50 airline industry. In addition, M&A may extend MMC and may intensify the collusive effect of MMC. The effect
51 of MMC may change through the reinforcement of market power by M&A. However, few studies have analyzed
52 the relationship between MMC and M&A.

53 Researchers have pointed out for a long time that MMC has collusive effects (for example, Bernheim and
54 Whinston (1990)). These effects have been empirically analyzed in diversified firms (Scott(1982), Feinberg(1985),
55 Scott(1991)), the banking industry (Pilloff(1999), ??eBonis and Ferrando (2000), Coccorese and Pellecchia(2009),
56 ??asman and Kasman(2015)), the manufacturing industry ??Stickland(1985), Hughes and Oughton (1993)), the
57 cement industry ??Jans and Rosenbaum(1996)), the cellular phone industry (Parker and Röller(1997), Busse
58 (2000), Dominguez et al(2016)), and others. Many of these studies showed the collusive effects of MMC, which
59 raises prices and decreases the quality of service. significant increases in airfares on long-distance routes.

60 There have been many studies on M&A in the airline industry. Most of these indicated that M&A strengthened
61 market power (Borenstein(1990)?Kim and Singal(1993)?and Morrison(1996)). Although these analyses focused
62 on M&A in the 1980s, there has been an increasing trend in M&A in recent years. As a result, many researchers
63 have been studying recent M&A. Luo (2014) showed that airfares did not increase after the merger between Delta
64 Airlines and Northwest Airlines on routes in which these airlines participated. Hüschelrath and Müller(2015)
65 indicated that the airfares on routes run by Delta and Northwest Airlines increased in the short run after the
66 merger between these airlines. Hüschelrath and Müller(2014) suggested that there were many routes on which
67 airfares increased as a result of the merger of US Airways and America West. In many empirical studies of the
68 airline industry, Bilotkach (2011) identified a relationship between MMC and M&A. Bilotkach (2011) analyzed
69 the relationship between MMC and flight frequencies before and after the merger of US Airways and America
70 West Airlines and suggested that MMC had an effect on frequency and that the merger intensified this effect.
71 responded to an actual entry but not to a potential entry, and that product differentiation softened the intensity
72 of the reaction in the Brazilian airline industry. Murakami et al (2015) found that new carriers discounted their
73 prices at the time of an entry and raised their airfares year by year in the Japanese airline industry. Recently,
74 some studies have researched the effects of MMC and LCCs. Zou et al (2011a) researched the impact of MMC
75 between high-cost carriers and LCCs on airfares. They showed that MMC raise yields and that MMC between
76 high-cost carriers and LCCs did not have significant effects. Zou et al (2011b) studied the effect of MMC in the
77 international airline industry. They found that MMC has collusive effects in the international airline industry
78 and that MMC between alliance members has positive impacts on airfares. Murakami and Asahi (2011) indicated
79 that the collusive effect of MMC may be weakened by competition with LCCs.

80 On the other hand, LCCs have diversified in recent years. Some studies have focused on this change in the
81 strategies of LCCs and FSCs. Dziedzic and Warnock-Smith (2016) indicated that LCCs try to capture business
82 passengers. Dobruszke et al (2017) suggested that LCCs are increasing their routes from major airports. Daft
83 and Albers (2015) showed empirically that the similarity among airlines' business models increases over time.

84 Airlines have executed M&A and changed their corporate organization and market power. Some LCCs have
85 also tried to transform their traditional strategies into new strategies that include some characteristics of FSCs.
86 Although many studies have focused on MMC in the US airline industry, variations of the airline industry may
87 change previous researches' results. Based on these previous studies, we analyzed the impact of M&A conducted
88 by Southwest Airlines on the effect of MMC in the US airline industry.

89 3 III. Econometric Model and Data

90 To analyze the effect of MMC and the impact of M&A, many studies have used a price function. We estimated
91 simultaneous demand and price equations to determine the effect of MMC on pricing behavior by using unbalanced
92 panel data for the fourth quarters of the years 2009-2014(2009Q4, 2010Q4, 2011Q4, 2012Q4, 2013Q4 and 2014Q4)
93 in the US airline industry. This analysis employs the following model specifications. The demand function is
94 given by:
$$= = + + + + + + + = 9 2 k i j t k j k 1 4 1 0 t t t j t 4 j t 3 j 2 i j t 1 0 i j t M T _ D$$

95 time _D POP log INC log Dist log p log q log (1)

96 Baum and Korn (1999) showed an inversed-U sharp relationship between MMC and the rates of market entry
97 and market exit. Their results implied that the rates of entry and exit increase as MMC is extended. Gimeno
98 and Woo (1999) suggested that the scope of economic intensify the collusive effect of MMC. Most of these studies
99 showed that MMC had an anti-competitive effect in the US airline industry in the 1980s. In addition, Zhang and
100 Round (2009) found that MMC did not raise airfares in the Chinese airline industry from 2002 to 2004.

101 Recent studies have shown a variety of results when assessing M&A. The development of LCCs
102 may be a factor in the variation in the effects of M&A. Many studies have analyzed the impact of LCCs. Dresner

112 (3) 3 We used the following equation to calculate marginal cost:
113 $j = \frac{AFL}{Dist} + AC$

114 , where i t AC is the average cost of j t s) 1 ($\{$ j Dist) i t AFL / j Dist (i t AC { j t p ? + ? ? ? ? ? = .
 115 ? is the route-specific price elasticity of demand, is the conduct variation and j t s is the market share of route
 116 j of carrier i in year t .

117 Previous studies, such as Brander and Zhang (1990 and Murakami (2011aMurakami (, 2011b)), found that ?
118 ranges between 0.15 and 0.67.

119 This study uses 0.634.

120 We analyze the impact of M&A on the effect of MMC to estimate the coefficients of the binary variables
 121 CWNR) and test the hypotheses regarding whether these coefficients were equal before and after the acquisition
 122 (for example, we test the null hypothesis(09 i WF ,1 1 ? = ?

123). The superscript numbers in the variables represent years. CWNR are binary variables that take 1 for
124 carriers which operated in 2009Q4 and 2014Q4 on routes from which Airtran Airways had exited and in which
125 Southwest Airlines have operated instead of it after the acquisition.

126 We used unbalanced panel data from the US airline industry for the fourth quarters of the years 2009-2014.
127 We chose the fourth quarters in order to analyze more competitive behavior in a period when airlines avoided
128 competitive behavior because demand in the fourth quarters is large. These carrier-specific data from scheduled
129 operations in city-pair routes were drawn from Data Base "DB1A". Per-capita individual income and demographic
130 data were obtained from the Regional Accounts Data, Bureau of Economic Analysis. Carriers that did not have
131 a 10% market share in duopoly markets, carriers that did not have a 5% share in triopoly or greater markets and
132 monopoly markets were excluded. Carriers reported as carrier XX (carriers that are not filed in IATA codes) in
133 DB1A were also omitted.

where ijt p and ijt q are the average airfare and output of route j of carrier i in year t , respectively. j $Dist$ is the distance between a pair of cities on route j , jt INC is the arithmetic per capita income of route j in year t , jt POP is the arithmetic average of the O/D population in year t , D_time t is the time dummy variable that takes 1 for year t (the benchmark year of this binary variable is 2009Q4), and k MT_D

138 is a binary variable that takes 1 for a market where k carriers compete (the benchmark market of this binary
 139 variable is a duopoly). where n is the number of firms and m is the number of routes. f_{jt} is the number of firms
 140 in route j in year t .

141 We drew cost data from the Air Carrier Financial Reports, Form 41 Financial Data to calculate the marginal
142 cost. Descriptive statistics for the continuous variables are given in Table 1. The number of samples was 26,248.
143 IV.

144 4 Empirical Results

145 The demand and price functions were estimated simultaneously by an iterative three stage least square (3SLS).
146 Table 2 indicates the empirical results and Wald test results. The coefficients in the demand function were
147 significantly reasonable sign. The coefficients of the output, the marginal cost and the Herfindahl index in the
148 price function were also significantly reasonable sign.

149 The coefficient of MMC was significantly positive. This suggests that MMC raises airfares in the US airline
 150 industry. The coefficients of WF 09 and WF 14 are not significant. This indicates that the effect of MMC on
 151 Southwest Airlines' pricing did not change before and after the acquisition on routes where Southwest Airlines and
 152 Airtran Airways were present in 2009Q4. The coefficients of WFR 09 and WFR 14 were significantly negative.
 153 This result indicated that the collusive effect of MMC on rivals' pricing went down on routes where Southwest
 154 Airlines and Airtran Airways were present. The coefficient of WFR 09 was also significantly lower than that of
 155 WFR 14 . This implied that the acquisition increased the collusive effect of MMC among rivals.

156 The coefficients of WN 09 and WN were significantly positive and the coefficient of WN 09 was higher than the
157 coefficient of WN 14 . These findings suggested that Southwest Airlines may show a more collusive effect of MMC
158 on routes where Airtran Airways had not been present and may have become more competitive by extending
159 MMC through the acquisition of Airtran. The coefficients of WNR09 and WNR14 were significantly negative.
160 This indicated that the anticompetitive effect decreased in routes where Southwest Airlines was present. The
161 value of WNR 09 was higher than that of WNR 14 . This implied that the acquisition increases the collusive
162 effect of MMC on rivals' pricing on routes where Southwest Airlines has operated and Airtran Airways has not
163 operated.

164 The coefficients of CWNR and CWNR were significantly negative and the value of CWNR 09 was higher than

165 that of CWNR 14 . These results showed that MMC may have a collusive effect by replacing Airtran Airways
166 with Southwest Airlines. We also did not reject the null hypothesis. This implied that the collusive effect of
167 MMC in the US airline industry may depend on the presence of Southwest Airlines.

168 The value of EXFLR 09 is significantly negative, and the value of EXFLR 14 is not significant. These findings
169 indicated that the anticompetitive effect of MMC on rivals became stronger as a result of Airtran Airways' exit.
170 This implied that the collusive effect of MMC might be weakened by competition with LCCs and be reinforced
171 by the exit of LCCs'.

172 These results characterize the relationship between MMC and M&A. First, Southwest Airlines did not show a
173 more collusive effect of MMC after the acquisition. Southwest Airlines increased its market share in the US airline
174 industry by the acquisition. As a result, Southwest Airlines may have more competitive awareness to prepare
175 for its rivals' competitive behavior as they attempt to retake their market shares. Second, Southwest's rivals
176 showed a more collusive effect of MMC after the acquisition. This may result from the reduction in the number
177 of LCCs resulting from the acquisition. Because Southwest Airlines has superiority, its rivals may attempt to
178 avoid competitive behaviors when taking MMC into account.

179 5 Conclusions

180 Many studies have shown that MMC has a collusive effect in the US airline industry. However, the US airline
181 industry has undergone a variety of changes. For example, LCCs have grown in size, and many airlines have
182 implemented M&A. In analyses of MMC, a lot of attention has not been paid to these changes. This paper focused
183 on the acquisition of Airtran Airways by Southwest Airlines, which has been enlarging its network, and analyzed
184 the impact of M&A on the effect of MMC. We made three main findings. First, MMC has collusive effects on
185 airlines' pricing. Second, Southwest Airlines' MMC effect did not increase after the acquisition of Airtran. Third,
186 Southwest Airlines' rivals may show more collusive effects of MMC after the acquisition of Airtran by Southwest.

187 These results have political implications. The regulatory agency must take into account the possibility that
188 M&A with LCCs result in MMC having stronger collusive effects. M&A by LCCs may increase the number of
189 routes where LCCs are present, and thus airlines may face a more competitive environment. However, airlines
190 may engage in more collusive behaviors as a result of MMC. In the case of M&A that decrease the number of
191 LCCs, the collusive effect of MMC also increases by disentangling FSCs from the pressures of competition with
192 LCCs. When a regulatory agency determines whether to approve M&A in the airline industry, it must take into
193 account the change induced by M&A in the effects of MMC.

194 Further study is required on a number of issues. First, analyses of these topics should be continued over a
195 long term. Airlines may take a long time to optimize their organizations after M&A. We should analyze MMC
196 in keeping with these optimizing processes. Second, we should take account of other M&As. Some airlines have
197 implemented M&As recently. Because this paper did not take into account the impacts of these M&As,
198 we have to analyze the effects of MMC after considering them.

199 6 Global Journal of Management and Business Research

Volume XVII Issue I Version I Year () A ¹

log p ij t 0 1 log q ij t 2 log MGjt 3 log HHIjt (4 1 WF i 09 1 WF 1
4 WNR 14 5 EXFLR 09 5 EXFLR 14 i 6 CWNR 09 6 CWNR i) log M
i i j 14 j

Figure 1:

1

Name	Mean	St. Dev	Minimum	Maximum
p (Airfare)	163.140	54.802	18.020	510.930
q (Passenger)	1,109.200	1,358.000	45.000	15,128.000
HHI(Herfindahl index)	4,244.700	1,548.200	1233.900	9,047.400
Dist(Distance)	1,322.900	730.300	100.000	4,962.000
MC(Marginal cost)	0.205	0.076	0.020	0.505
POP(Population)	4,112,300	2,506,900	250,480	16,324,000
INC(Per-capita income)	40,457.000	4,716.000	24,225.000	57,514.000
MMC (Multimarket contact)	154.140	110.340	0.500	573.000

Figure 2: Table 1 :

2

Variable	Price function		Demand function	
	Coefficient	S E	Variable	S E
q	0.017 ***	0.004	p	-1.429 ***
MC	1.025 ***	0.009	Dist	0.276 ***
HHD	0.054 ***	0.009	INC	0.557 ***
MMC(4 ?)	0.039 ***	0.003	POP	0.613 ***
	LC@.356 ***	0.007	MT i ^{1/4} ?"	-0.371 ***
WF 09 (1 ?)	0.009	0.006	MT i ^{1/4} ?"	-0.708 ***
WF 14 (1 ?)	0.008	0.005	MT ?	-0.991 ***
WFR 09 (2 ?)	-0.030 ***	0.005	MT ?	-1.377 ***
WFR 14 (2 ?)	-0.008 **	0.004	MT ?	-1.652 ***
WN 09 (3 ?)	0.020 ***	0.003	MT ?	-2.003 ***
WN 14 (3 ?)	0.010 ***	0.003	MT 9	-2.037 ***
WNR 09 (4 ?)	-0.027 ***	0.002	time 10	0.043 *
WNR 14 (4 ?)	-0.012 ***	0.002	time 11	0.137 ***
CWNR 09 (6 ?)	-0.031 ***	0.006	time 12	0.053 **
CWNR 14 (6 ?)	-0.015 ***	0.005	time 13	0.143 ***
EXFLR 09 (5 ?)	-0.021 ***	0.006	time 14	0.151 ***
EXFLR 14 (5 ?)	-0.008	0.005	CONSTANT	-3.064 ***
time 10	-0.114 ***	0.007	System R	0.944
time 11	-0.200 ***	0.007	2	
time 12	-0.223 ***	0.007		
time 13 time 14	-0.233 ***	-0.214 ***	Test of ?	() = 71
		0.008	overall	
CONSTANT	6.182 ***	0.036	significance	
			Wald Test	
Null hypothesis	Statistic	Null hypothesis	Statistic	Null hypothesis
?	1 0.001	? 2 ? =	2 14.156	Statistic
	1		***	
	?			
	=			

Figure 3: Table 2 :

200 .1 This page is intentionally left blank

201 [Morrison ()] 'Actual, adjacent, and potential competition estimating the full effect of Southwest Airlines'. S A
202 Morrison . *Journal of Transport Economics and Policy* 2001. 35 (2) p. . (JTEP))

203 [Singal ()] 'Airline mergers and multimarket contact'. V Singal . *Managerial and Decision Economics* 1996. 17
204 (6) p. .

205 [Borenstein ()] 'Airline mergers, airport dominance, and market power'. S Borenstein . *The American Economic
206 Review* 1990. 80 (2) p. .

207 [Morrison ()] 'Airline mergers: A longer view'. S A Morrison . *Journal of Transport Economics and Policy* 1996.
208 30 (3) p. .

209 [Hüschelrath and Müller ()] 'Airline networks, mergers, and consumer welfare'. K Hüschelrath , K Müller .
210 *Journal of Transport Economics and Policy (JTEP)* 2014. 48 (3) p. .

211 [Daft and Albers ()] 'An empirical analysis of airline business model convergence'. J Daft , S Albers . *Journal of
212 Air Transport Management* 2015. 46 p. .

213 [Murakami ()] 'An empirical analysis of inter-firm rivalry between Japanese full-service and low-cost carriers'. H
214 Murakami . *Pacific Economic Review* 2011b. 16 (1) p. .

215 [Murakami and Asahi ()] 'An Empirical analysis of the effect of multimarket contacts on US air carriers' pricing
216 behaviors'. H Murakami , R Asahi . *The Singapore Economic Review* 2011. 56 (4) p. .

217 [Parker and Röller ()] 'Collusive conduct in duopolies: multimarket contact and cross-ownership in the mobile
218 telephone industry'. P M Parker , L H Röller . *The RAND Journal of Economics* 1997. 28 (2) p. .

219 [Windle and Dresner ()] 'Competitive responses to low cost carrier entry'. R Windle , M Dresner . *Transportation
220 Research Part E: Logistics and Transportation Review* 1999. 35 (1) p. .

221 [Strickland ()] 'Conglomerate mergers, mutual forbearance behavior and price competition'. A D Strickland .
222 *Managerial and Decision Economics* 1985. 6 (3) p. .

223 [De Bonis and Ferrando ()] R De Bonis , A Ferrando . *The Italian banking structure in the 1990s: testing the
224 multimarket contact hypothesis*, 2000. 29 p. .

225 [Hughes and Oughton ()] 'Diversification, multi-market contact and profitability'. K Hughes , C Oughton .
226 *Economica* 1993. 60 (238) p. .

227 [Huse and Oliveira ()] 'Does product differentiation soften price reactions to entry? Evidence from the airline
228 industry'. C & Huse , V M Oliveira . *Journal of Transport Economics and Policy (JTEP)* 2012. 46 (2) p. .

229 [Murakami et al. ()] 'Dynamic effect of inter-firm rivalry on airfares: Case of Japan's full-service and new air
230 carriers'. H Murakami , Y Amano , R Asahi . *Journal of Air Transport Management* 2015. 44 p. .

231 [Brander and Zhang ()] 'Dynamic Oligopoly Behavior in the Airline Industry'. J A Brander , A Zhang .
232 *International Journal of Industrial Organization* 1993. 11 (3) p. .

233 [Baum and Korn ()] 'Dynamics of dyadic competitive interaction'. J A Baum , H J Korn . *Strategic Management
234 Journal* 1999. 39 (2) p. .

235 [Dobruszkes et al. ()] 'Hello major airports, goodbye regional airports? Recent changes in European and US
236 low-cost airline airport choice'. F Dobruszkes , M Givoni , T Vowles . *Journal of Air Transport Management
237* 2017. 59 p. .

238 [Goolsbee and Syverson ()] 'How do incumbents respond to the threat of entry? Evidence from the major
239 airlines'. A Goolsbee , Syverson . *Quarterly Journal of Economics* 2008. 123 (4) p. .

240 [Oum et al. ()] 'Inter-firm rivalry and firm-specific price elasticities in deregulated airline markets'. T H Oum ,
241 A Zhang , Y Zhang . *Journal of Transport Economics and Policy* 1993. 27 (2) p. .

242 [Evans and Kessides ()] 'Living by the" golden rule": Multimarket contact in the US airline industry'. W N
243 Evans , I N Kessides . *The Quarterly Journal of Economics* 1994. 109 (2) p. .

244 [Zou et al. ()] 'Many fields of battle how cost structure affects competition across multiple markets'. L Zou , M
245 Dresner , R Windle . *Journal of Transport Economics and Policy* 2011a. 45 (1) p. . (JTEP))

246 [Brander and Zhang ()] 'Market Conduct in the Airline Industry: An Empirical Investigation'. J A Brander , A
247 Zhang . *RAND Journal of Economics* 1990. 21 (4) p. .

248 [Zhang et al. ()] 'Market power and its determinants in the Chinese airline industry'. Q Zhang , H Yang , O
249 Wang , Zhang . *Transportation Research Part A* 2014. 64 p. .

250 [Hüschelrath and Müller ()] 'Market power, efficiencies, and entry evidence from an airline merger'. K Hüschel-
251 rath , K Müller . *Managerial and Decision Economics* 2015. 36 (4) p. .

252 [Sandler ()] 'Market share instability in commercial airline markets and the impact of deregulation'. R D Sandler
253 . *The Journal of Industrial Economics* 1988. 36 (3) p. .

254 [Kim and Singal ()] 'Mergers and market power: Evidence from the airline industry'. E H Kim , V Singal . *The
255 American Economic Review* 1993. 83 (3) p. .

256 [Scott ()] 'Multimarket contact among diversified oligopolists'. J T Scott . *International Journal of Industrial
257 Organization* 1991. 9 (2) p. .

258 [Bernheim and Whinston ()] 'Multimarket contact and collusive behavior'. B D Bernheim , M D Whinston . *The
259 RAND Journal of Economics* 1990. 21 (1) p. .

260 [Scott ()] 'Multimarket contact and economic performance'. J T Scott . *The Review of Economics and Statistics*
261 1982. 64 (3) p. .

262 [Bilotkach ()] 'Multimarket contact and intensity of competition: evidence from an airline merger'. V Bilotkach
263 . *Review of Industrial Organization* 2011. 38 (1) p. .

264 [Domínguez et al. ()] 'Multimarket contact and performance: Evidence from emerging economies'. B Domínguez
265 , E Garrido , R Orcos . *BRQ Business Research Quarterly* 2016. 19 (4) p. .

266 [Busse ()] 'Multimarket contact and price coordination in the cellular telephone industry'. M R Busse . *Journal
267 of Economics & Management Strategy* 2000. 9 (3) p. .

268 [Jans and Rosenbaum ()] 'Multimarket contact and pricing: Evidence from the US cement industry'. I Jans , D
269 I Rosenbaum . *International Journal of Industrial Organization* 1997. 15 (3) p. .

270 [Coccorese and Pellecchia ()] 'Multimarket contact and profitability in banking: evidence from Italy'. P Coc-
271 corese , A Pellecchia . *Journal of Financial Services Research* 2009. 35 (3) p. .

272 [Pilloff ()] 'Multimarket contact in banking'. S J Pilloff . *Review of Industrial Organization* 1999. 14 (2) p. .

273 [Zou et al. ()] 'Multimarket contact, alliance membership, and prices in international airline markets'. L Zou , C
274 Yu , M Dresner . *Transportation Research Part E: Logistics and Transportation Review* 2011b. 48 (2) p. .

275 [Gimeno and Woo ()] 'Multimarket contact, economies of scope, and firm performance'. J Gimeno , C Y Woo .
276 *Academy of Management Journal* 1999. 42 (3) p. .

277 [Kasman and Kasman ()] 'Multimarket contact, market power and financial stability in the Turkish banking
278 industry'. S Kasman , A Kasman . *Empirical Economics* 2016. 50 (2) p. .

279 [Zhang and Round ()] 'Policy implications of the effects of concentration and multimarket contact in china's
280 airline market'. Y Zhang , D K Round . *Review of Industrial Organization* 2009. 34 (4) p. .

281 [Feinberg ()] 'Sales-at-Risk": A Test of the Mutual Forbearance Theory of Conglomerate Behavior'. R M Feinberg
282 . *Journal of Business* 1985. 36 (2) p. .

283 [Vowles ()] 'The effect of low fare air carriers on airfares in the US'. T M Vowles . *Journal of Transport Geography*
284 2000. 8 (2) p. .

285 [Dresner et al. ()] 'The impact of low-cost carriers on airport and route competition'. M Dresner , J S C Lin , R
286 Windle . *Journal of Transport Economics and Policy* 1996. 30 (3) p. .

287 [Luo ()] 'The price effects of the Delta/Northwest airline merger'. D Luo . *Review of Industrial Organization*
288 2014. 44 (1) p. .

289 [Dziedzic and Warnock-Smith ()] 'The role of secondary airports for today's low-cost carrier business models:
290 The European case'. M Dziedzic , D Warnock-Smith . *Research in Transportation Business & Management*
291 2016. 21 p. .

292 [Murakami ()] 'Time effect of low-cost carrier entry and social welfare in US Large Air Markets'. H Murakami .
293 *Transportation Research Part E* 2011a. 47 (3) p. .