

1 The Impact of E-Commerce on Retail

2 Mesfer Alsubaie¹

3 ¹ Saudi Arabian Cultural Mission

4 *Received: 9 December 2015 Accepted: 3 January 2016 Published: 15 January 2016*

5

6 **Abstract**

7 The research focus of my paper is e-commerce influence as new category of sales activity in
8 US. The problem understanding is described in conceptual model below. In the end I want to
9 know do e-commerce any influence on sales volume in US market and in retail sales category. I
10 have to use methods which extract the dependences between how e-commerce is performing,
11 and what is an influence of e-commerce branch on US market. The research method of to solve
12 this tasks is multiple linear regression. I select this method in statistics, linear regression is an
13 approach for modeling the relationship between a scalar dependent variable y and one or more
14 explanatory variables (David A. Freedman, 2009).

15

16 **Index terms**— e-commerce, retail, us market, sales, technology, market size, demand, supply, satisfaction.

17 **1 Introduction**

18 The new era of information technologies gives me new understanding of retail sales and how they are performing.
19 In nowadays the retail opened a new way of products selling -this is e-commerce. What is ecommerce, how it
20 performs on US market, what new opportunities e-commerce gives to me and how it works? How e-commerce
21 influent on traditional sales, how retail is developing today? These are the topics of my study.

22 From my understanding the e-commerce sales are a part of retail sales. In other words, e-commerce is simply
23 alternative way of selling and buying products. How new technologies is connected to traditional understanding?
24 From my point of view, I have two parts for investigation. First is -how e-commerce influences on sales via global
25 understanding and trends? Is it produce new opportunities for money moving, is it create new demand? Second,
26 is e-commerce something more modern and advanced, can new technologies replace traditional sales on market?

27 The first answer is what is e-commerce? Ecommerce, known as electronic commerce, is one of the technological
28 undertakings that have seen companies using computer networks, like the internet, in facilitating trading activities
29 as far as products and services are put into consideration. Electronic commerce brings in such technologies
30 as electronic funds transfer, internet marketing, supply chain management and online transaction processing
31 among others. It should be pointed out that some outstanding transactions that occur under the influence of
32 ecommerce include business-to-consumer, business-to-business and consumer to consumer among other operations
33 found relevant.

34 **2 II.**

35 **3 Literature Review**

36 Internet marketing and online transaction processing have received significant attention all over the world.
37 According to Monga, the author believes that modern electronic commerce entails the unlimited use of the
38 World Wide Web in the transaction's life-cycle. The author believes that e-commerce can only find ground in
39 businesses through the internet and other relevant network communication technologies. It, therefore, facilitates
40 an automated process of commercial transactions thereby making the operations in business much simpler and
41 easier to handle. Monga looks on the good side of Internet commerce where ecommerce seems to allow people to
42 run their businesses without experiencing any barriers of distance or time. All it demands is to log in the web
43 and access products and services of one's choice.

6 DATA SPECIFICATIONS

44 However, what the author saw to be the most important thing revolved around the impact of Ecommerce on
45 business. It is true that the internet has changed even the way people communicate as well as keep finances.
46 It means that electronic commerce has developed a big impact in the society. Monga fostered on the effects
47 of e-commerce on significant dimensions felt relevant in the business context. She focused on the impact of
48 e-commerce on direct marketing where the author found out that electronic commerce was seen enhancing the
49 promotion of products and services through attractive, direct and interactive contact with clients. It remained
50 paramount that the subject further led to the creation of new sales channel for the popular products and offered
51 a bi-directional nature of communication.

52 Also, the cost involved in delivering information to potential parties over the net led to substantial savings as
53 far as comparisons between physical delivery and digitized products are in consideration. Monga also focused on
54 reduced cycle time where delivery of digitized products and services could be reduced to a few seconds. Saving
55 time in business is very essential and further defines the performance stand of the business in context. Monga
56 believes that that consumer service can essentially be enhanced given the fact that e-commerce makes it easier
57 for customers to access details online and further forward complaints through email, which can only be done in a
58 few seconds. Apart from easy access to details online, it is also important to look at the corporate image, which
59 is crucial to winning the trust of the clients.

60 The impact of e-commerce can further be identified regarding manufacturing and finance. The two affect
61 business flow and one should approach these regarding what e-commerce can do to influence their performance in
62 the world of business (Bothma and Geldenhuys). E-commerce is evidently changing most manufacturing systems
63 with pragmatic consideration of the transition from mass production to demand driven as well as just-in-time
64 manufacturing. Most production systems are argued to share integration with marketing, finance, and other
65 systems. Making use of Web-based ERP systems has seen orders taken from customers and directed to designers
66 happening in the shortest time possible. With e-commerce in place, the production cycle time can be cut by
67 almost 50% depending on the type of designers and engineers found in a location.

68 Jeff Jordan said "we're approaching a sea change in retail where physical retail is displaced by ecommerce in
69 a multitude of categories. The argument at a high level:

70 Online retail is relentlessly taking share in many specialty retail categories, resulting in total dollars available
71 to physical retailers stagnating or even declining. This is starting to put intense pressure on their top lines.

72 Physical retailers are very highly leveraged and often have narrow profit margins. Material declines in their
73 top lines make them unprofitable and quickly bankrupt.

74 Online retail will benefit greatly from the elimination of their physical competition and their growth should
75 accelerate." III.

76 4 Hypothesis

77 HOa: E-commerce opens new opportunities to retail sales growth. HOb: E-commerce substitutes traditional
78 sales on market.

79 5 IV.

80 6 Data Specifications

81 The main sources where I found trends are: economic research Federal Reserve Bank site for population, GDP
82 per cap, Households Income, Households dept., Working population, GDP for working population, PPI for US
83 producers and PPI for US Ecommerce; Bureau of Labor Statistics for Employment, Unemployment rate trends;
84 Internet World Statistics site for internet penetration in US; US census site for US retail total sales, stores sales,
85 E-commerce sales, and E-commerce as a Percent of Total Sales.

86 I tried to obtain all trends in quarter scale for 2000-2015 period. In the end I have problems to find ecommerce
87 within retail category data. That's why data about satisfaction were copied from report.

88 The Working Population and GDP for working population were found only for 2000Q1-2015Q1 period. I used
89 linear approximation to complete these trends because they have close to linear nature according to graphical
90 examination.

91 For within retail analysis I found that PPI trend is only for 2006 Q2-2015 Q4 is available. That's why I make
92 time scale for retail analysis shorter. The PPI and PPIE are actually only one measure for retail analysis that was
93 found in quarter scale from beginning from trusted source. I can't drop it, because other scales satisfaction and
94 penetration for 2000-2015 years have annual scale in reports and were approximated. And sources are not gives
95 me 100% confidence because these scales are taking from survey results, I don't know data and methodology. I
96 understand that these scales Satisfaction and Penetration can be not very good connected because not right scale,
97 and they haven't same regular base of measurement, and only can help me to evaluate general dependence if they
98 present because for such analysis I need real retail data such firm as Nielsen for example, and full consumer's
99 satisfaction research in history. That's why I used these scales approximation for 2006Q2-2015 period only.

100 V.

101 7 Conceptual Model

102 Macroeconomics is a branch of economics dealing with the performance, structure, behavior, and decision-making
103 of an economy as a whole, rather than individual markets. This includes national, regional, and global economies.
104 (Blaug, Mark, 1986; Sullivan, Arthur, Sheffrin, Steven M., 2003).

105 Macroeconomics deal with such indicators of economy as GDP, unemployment rates, Households income etc.
106 I as macroeconomists can develop models that figure out the relationships between these factors. In my topic I
107 have to include macroeconomic analysis of retail sales by general factors which reflect my understanding of the
108 retail sales, and e-commerce global factors in this model too.

109 My economic understanding of retail sales value is described as mix of such factors as: size of US market,
110 volume of US market, and the market demands. What I mean when tell this:

111 The goods are buying by people. This means that population of active consumer's influence on sales volume.
112 How this population can be described? It can be described as total population of US for traditional sales and
113 internet penetration for e-commerce, as base for internet sales.

114 How I can think about buyers? How buyers influence on sales volume? The buyers go to market and buy
115 goods if they have money to buy and demand. What characteristics of buyers form the volume? The possible
116 answer is GDP, GDP per cap, Income of household, Income of households per cap etc. If I will use general data
117 of GDP or Total income for households I have to adjust this volume using population value, or target population
118 size. Who make sales for retailers? Households?

119 Or Households + Firms/ Government=GDP? This is interesting question. I propose to check which trend
120 from these two, and select better one.

121 The other good characteristic of buyers is demand. If people have money but if they needn't to buy goods,
122 they will not buy. If people have demand but they have negative trend (expectations) in economy, the people
123 will try to save money for future. How this parameter can be reflected? If you suffer to lose or find new job you
124 will save money. I propose to figure out this dependence using unemployment rate with lag checking. The total
125 influence of economy is present in GDP/Income data already.

126 Next good question is about factors of economy which influence on possible volume of sales is situation when
127 I have same economy characteristics in economy but growth of sales. How is this possible? The good example
128 is: if you a man who use e-commerce to sell some needn't goods from home and buy "new". You have same
129 income and GDP approximately (only taxes from e-commerce are added actually), but already have additional
130 not registered income which you can use to buy. The affects like this will describe using US Internet penetration
131 trend. The meaning of such step is that how new technologies rise sales due their development?

132 Okay, what are the conclusions of upper discussion? I have global factors which influence on retail sales
133 volume. The function for total sales is looking like: Sales = F (Market size (Population), Economy (GDP,
134 income), Demand (Unemployment rate), Ecommerce influence). How this parameter performs. Size multiply
135 on economy value gives the possible volume from which buyers can buy goods. The demand will represent by
136 number of persons which can have demand in goods. The possible trend is unemployment rate, size of target
137 category etc. All that I wrote upper describes my understanding of market to confirm or reject H0a hypothesis,
138 for confirming which I will use US model and trends.

139 The next understanding describes the process of H0b checking. For confirmation of this hypothesis I will
140 design Retail model and trends. The e-commerce sales are alternative way of buying. This means that within
141 retail, the e-commerce is driven by same understanding in general but I will use other trends which reflect this
142 understanding within retail. The main definitions are: Market size, market values -economy, demand -the benefits
143 of e-commerce use, other unexplored influences. Which data/trends were selected to determine this influence in
144 my study?

145 The size factor is coverage: internet penetration, count of e-shop's buyers etc. Can I buy product if I'm not
146 internet user and don't know how to make this? Of course not! During my mining process I found only one trend
147 -internet penetration. The number of shops, its volume, and count of e-shop's buyers are information which can
148 be bought only as part of retail researches provided by marketing agencies.

149 The most powerful driver on market in all times is when your products in your shops are affordable/cheaper
150 than others. To investigate this factor, I have to find trend which reflects economy. According to economic theory
151 this can be price elasticity or differences in prices. If proposition in your e-shop is better than in traditional the
152 people will like to buy goods in your shop. If goods produced by your industry is cheaper than they are more
153 concurrent. During my investigation I found only Producers price index (PPI) as part of governmental statistics.
154 The Consumers price index (CPI) was found only for total retail. The CPI for ecommerce goods can be obtained
155 only in marketing agencies again.

156 Demand? Why I have to buy goods in Ecommerce shops? Why I need to do this? The possible answer is a
157 satisfaction about e-shops use compare to other solutions. This trend has to include emotional, functional and
158 other benefits characteristics of e-shops usage. This topic is a part of special researches again. But I found report
159 which have satisfaction trend in annual scale to reflect my understanding.

160 8 VI.

161 9 Data Analysis

162 The data analysis includes the trends analysis which I found according to description from conceptual model.
163 How these data were transformed and computed to reflect my economic understanding. According to model I
164 have two steps, two regression models. First is reflecting the US market understanding/prediction of US retail
165 sales to find the influence of e-commerce on global level. Second is working within US retail to figure out how
166 e-commerce is performing as alternative way of buying. In other words, my model can be used for prediction,
167 forecasting, or to study the relationships between the independent variables and the dependent variable, and to
168 explore the forms of these relationships (Armstrong, J. Scott, 2012).

169 According to upper discussion I found such trends: Total retail sales, Stores sales, E-commerce sales, E-
170 commerce as a Percent of Total Sales in quarter scale for 2000-2015 years. These trends are representing retail
171 data for both parts of analysis. According to understanding of regression analysis I have to make 5 steps of data
172 analysis: Data validation, Data transformation, Correlation analysis, Outliers identifying, Checking multivariate
173 assumptionsnormality.

174 10 VII.

175 11 Data Validation

176 This is the process which validate can be trends used in model to logical criteria.

177 The employment trend can't be used because it is reflected in percentage of population. This measure is not
178 reflecting the aging. This means that this parameter is dropping people in high age as not consumers. But this
179 is not connected to real situation. Thus only unemployment rate can be used.

180 CPI is not used because I have not found same statistics for e-commerce. Households dept. was dropped
181 because household's income trend shows lower correlation in future correlation analysis.

182 Working population is dropped because it not reflects total consumer population means target category of
183 analysis.

184 I found other trends except listed in data analysis part. But they are not passed validation process.

185 I continued with the overview of and checked for potential multicollinearity issue, skewness and kurtosis issue.
186 From the rule of the thumb I can estimate that I'm having challenge with skewness and kurtosis. I run a
187 description analysis for this:

188 12 B

189 The Impact of E-Commerce on Retail Harrell discusses a lot of options for "dimension reduction" (getting your
190 number of covariates down to a more reasonable size), such as PCA, but the most important thing is that in
191 order to have any confidence in the results dimension reduction must be done without looking at the response
192 variable. Doing the regression again with just the significant variables, as you suggest above, is in almost every
193 case a bad idea". (Harrell, Frank., 2001).

194 In my analysis I have 64 observations for US trends. That's why I can use 3 or 2 trend model for linear
195 regression.

196 For second part which describes retail trends I have to use 2 trends for good estimation and VIII.

197 13 Data Transformation

198 The example I have US GDP per capita and population. This data has to be multiplied according to
199 understanding of market volume = size * value.

200 The penetration value has to be transformed into volume value same as in previous paragraph.

201 The unemployment rate is in percentage. And it has not to be transformed because according to my plan it
202 has to reflect the demand -value between 0 and 1 when 1 there is not demand present when 0 people buy all
203 that they can. Of course other trend of demand may be found through market researches according to customers
204 spent survey or something like this. But current trend looks good in my logic too.

205 I predict a percent of e-commerce sales to find, how this factors substitute traditional retail. The data
206 difference in satisfaction and difference in PPI are not implemented directly. It demonstrates a moving process
207 of shoppers according to perceptions. The moving process is connected to importance of e-commerce for people
208 and advertising. The best trend which reflects the importance of e-commerce sales within retail is ecommerce
209 sales value. So I decided to multiply ecommerce sales from previous period on this difference to reflect this
210 understanding correctly. In other words, people who are using e-commerce can describe to others why they are
211 using it, and agitate them to use this way of buying.

212 The other problem is difference in data measurement scale. When I multiply GDP per capita on Population
213 I received a big number. I decided to divide it on 10-4 to make regression coefficients more comfortable to view
214 and understand.

215 14 IX.

216 15 Correlation Analysis

217 I have to check are my variable related to each other somehow? To make this, I used Pearson correlation. The most
218 familiar measure of dependence between two quantities is the Pearson product-moment correlation coefficient,
219 or "Pearson's correlation coefficient", commonly called simply "the correlation coefficient". It is obtained by
220 dividing the covariance of the two variables by the product of their standard deviations. Karl Pearson developed
221 the coefficient from a similar but slightly different idea by Francis Galton. (Rodgers, J. L.; Nicewander, W. ??.,
222 1988).

223 I carried on with the correlation examination in order to find out the relationships between predicting variables
224 to select better one list of trends.

225 I analyzed bigger number of trends when searching for appropriate data and model. But last trends are
226 reflecting model well, I used few from others to demonstrate selection process. According to table 3 I have 10
227 trends related to our data. I have to select only needed. For example, I have trends which described Income.
228 This is GDP per capita, GDP work -GDP for working part of society. According to this tables GDP per capita
229 have highest correlation, thus I decide to select it as trend for analysis. Next I see that population trend have
230 big correlation value too. But in my understanding my model in logic purposes can't be like $a*pop + b*gdp$ per
231 cap because these data have to be connected via multiplying to show the total volume. That's why GDPpop4
232 trend was designed. The unemployment rate was selected instead Employment because I select total population
233 instead working population and only this trend relate to these data. The penetration represents the measure of
234 high technology understanding in society, to outline how connection to internet and its usage lead people to use
235 new capabilities. This parameter helps to understand how understanding (4) performing in US model.

236 16 XI. Checking Multivariate Assumptions -Normality

237 According to understanding of model I are not searching for one value, which is true. I want to examine all
238 diapason. That's why my trends have to be not normally distributed, or better say maximum scattered.

239 17 B

240 The Impact of E-Commerce on Retail

241 18 Regression Models

242 In statistics, linear regression is an approach for modeling the relationship between a scalar dependent variable
243 y and one or more explanatory variables (or independent variables) denoted X . The case of one explanatory
244 variable is called simple linear regression. For more than one explanatory variable, the process is called multiple
245 linear regression (David A. Freedman, 2009).

246 19 XIII.

247 20 Why i used Multiple Linear

248 Regression?

249 In my model I am sure that data have linear relations with dependent variable, because this leads from my
250 conceptual model which was built on real economic understanding and logic of market, and trends transformations
251 which were made to represent data in same scale and same logical understanding according to conceptual model
252 for US's and Retail's regression models.

253 21 XIV.

254 22 US Regression Model Results

255 23 Table 7 : US Model Summary

256 In Table ?? of US Model Summary I see that R^2 = 0.954. I could explain 95.4% of variability in the
257 dependent variable with this multiple linear regression model according to the model summary. This is what
258 exactly I needed, because I want to receive model which is close to real life.

259 According to ANOVA table 8 in this multiple linear regression model is a statistically significant predictor
260 of the dependent variable, with p -value = 0,000 (which significantly below the 0.05 critical value). According to
261 Table 9, I have 2 statistically significant coefficients. This is GDPpop4 and Unemployment Rate. The Penetration
262 is not statistically significant. This means that penetration has not statistically significant influence on this model
263 (or very small which can't be recognized), and can be excluded if I want to build equation for model.

264 Backing to my hypothesis I have to reject HOa that E-commerce opens the new opportunities to retail sales
265 growth, or they are not significant. In other words, internet usage and internet penetration not leads to changes
266 and raising retail sales significantly.

267 There is variance inflation factor VIF that explains collinearity level between independent variables that is
268 quite higher than 10 meaning there is not collinearity level between independent variables for GDPpop4 and
269 penetration. This is bad result.

270 I re-run US model and I excluded penetration variable to obtain better equation for Retail sales. There is
271 variance inflation factor VIF that explains collinearity level between independent variables that is quite lower
272 than 10 meaning there is collinearity level between independent variables for GDPpop4 and penetration.

273 All other possible outputs are great too. This means that I can use this second US model without influence
274 of Internet penetration to predict sales volume. Backing to my hypothesis I have to accept HOb: E-commerce
275 substitute traditional sales on market. What drivers of this process and how are they measuring? I find that
276 positive differences in satisfaction and Producers index leads to popularizing of shopping.

277 **24 XV. Retail Regression Model Results**

278 There is variance inflation factor VIF that explains collinearity level between independent variables that is
279 quite lower than 10 meaning there is collinearity level between independent variables for SalesGrapPPIDif2 and
280 CurSatDif. This is good.

281 **25 Plot 1 : Normal P-P Plot of Regression Standardized 282 Residual**

283 The Plot 1 shows the differences between observed and estimated value. I see there that I have some disconnection
284 from my point of view. I will describe this in conclusions better.

285 I also checked for homoscedasticity issues of my database as show and according to the graphical examination
286 from where I can conclude that I haven't got problem with heteroscedasticity (Goldberger, Arthur S., 1964).

287 **26 B**

288 The Impact of E-Commerce on Retail

289 **27 XVI. Conclusion and Recommendation**

290 As results, I have to reject HOa: E-commerce opens the new opportunities to retail sales growth, and how is this
291 measuring? This measurement, according to results, is not significant. Possible I can find some other trends but
292 internet access and growing number of internet users are not gives significant impact on retail volume.

293 The retail sales are measuring according to general understanding of economics. According to demand. The
294 possible formula to obtain significant value of US retail is:

295 $\text{Population} \times 10^{-3} \times \text{GDP per capita} \times 2.581695207 \times 10^{-4} + \text{Unemployment Rate \%} \times -8609.253793 - 102862.6385 =$
296 sales. The minus value of constant can be explained as minimum level of market volume needed + expectations to
297 start retail sales. According to this analysis I can recommend to develop e-commerce solutions like in paragraph
298 (4) of conceptual model to obtain influence which will significant. But for now such influence on market are not
299 significant.

300 According to results I have to accept HOb: Ecommerce substitute traditional sales on market. What drivers of
301 this process and how are they measuring? The drivers of this process is higher satisfactions of using e-commerce
302 and differences in prices. The PPI of e-commerce firms is lower. That's means that goods and services are
303 cheaper and affordable compare to traditional solution. The other conclusion is that if you use internet, this does
304 not mean that you use ecommerce. But you begin to use ecommerce if somebody who use it already recommend
305 and describe you the profits in price and satisfaction.

306 The formula for e-commerce percentage in retail sales is: $(\text{SatisfactionE-commerce\%} -$
307 $\text{SatisfactionTraditional\%}) \times \text{E Sales} \times 7.731388 + (\text{PPI-PPIE}) \times \text{ESales} \times 0.652988531 + 0.003371\% = \text{ESales\%}$.

308 This formula tells me that Positive satisfaction and positive difference in sales index between Ecommerce and
309 Traditional attributes leads to growth of ESales. If difference become "-", then I will have observed decreasing
310 of E-commerce percentage. I find that E-commerce sales is driven by consumer's logic, and not connected to
311 popularization of information technologies, only to economic logic.

312 **28 XVII.**

313 **29 Further Research**

314 The further investigations can deal only with more concrete data which can be obtained only in marketing
315 agencies which conduct retail researches.

¹ ²

Figure 1: 4

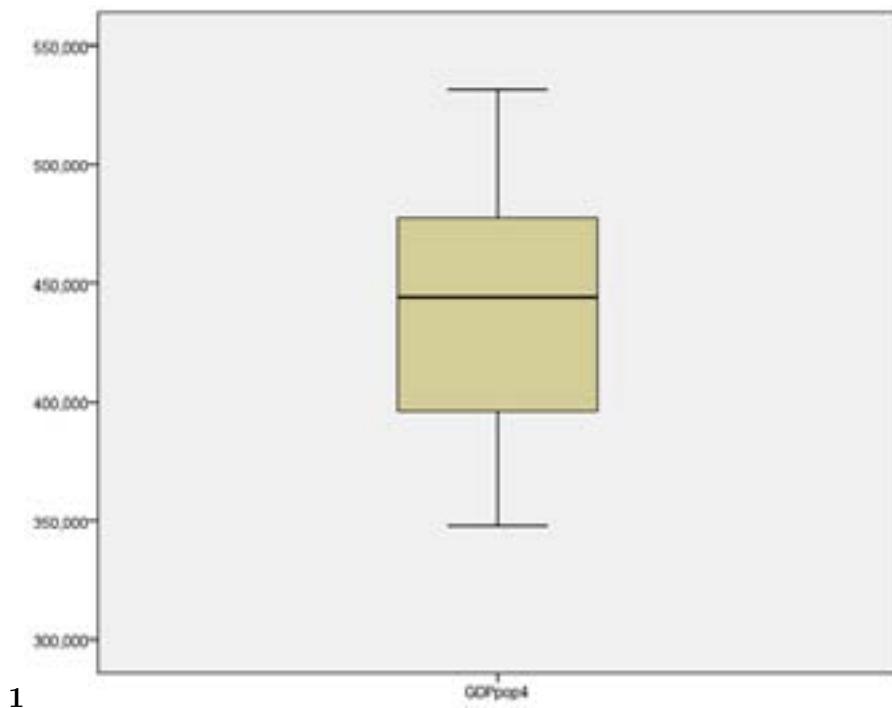


Figure 2: Graph 1 :

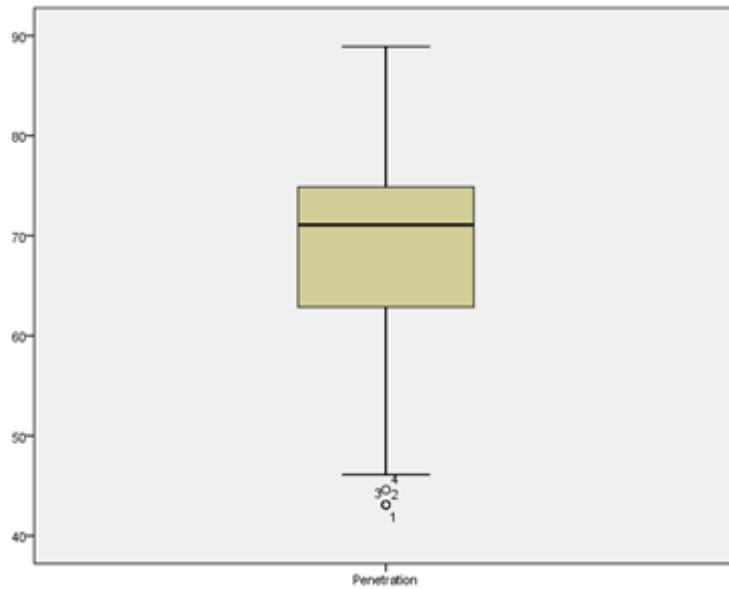


Figure 3:

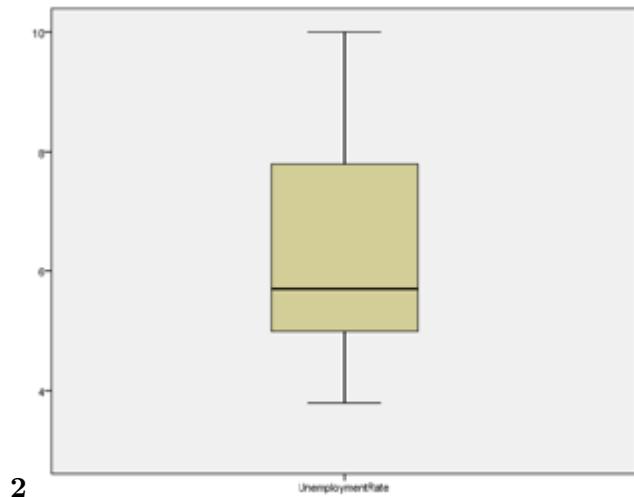


Figure 4: Plot 2 :

1

2

Figure 5: Table 1 :

How many observations I have to have in my models. The scientific criteria are: "The general rule of thumb (based on stuff in Frank Harrell's book, Regression Modeling Strategies) is that if you expect to be able to detect reasonable-size effects with reasonable power, you need 10-20 observations per parameter (covariate) estimated.

Figure 6: Table 2 :

N		Minimum	Maximum	Mean	Std. Error	Std. Deviation	Varia
Statistic		Statistic	Statistic	Statistic		Statistic	Stati
Working Population	64	178274.000	207535.595	194140.345	1005.496	8043.970	6470
Unemployment Rate	64	3.800	10.000	6.295	.223	1.788	3.195
Population	64	281304.000	322693.000	302622.234	1535.440	12283.520	1508
Employement	64	58.200	64.700	61.150	.271	2.172	4.717
GDPPC	64	12359.100	16470.600	14451.189	140.710	1125.679	1267
GDP	64	2203306193.400	3349511675.586	2811181894.911	40606814.525	324854516.202	1055
Work							
GDP pop	64	3476664266.400	5314947325.800	4386380689.352	63988993.812	511911950.494	2620
GDPpop4	64	347666.427	531494.733	438638.069	6398.899	51191.195	2620
Penetration	64	43.100	88.910	69.326	1.524	12.194	148.6
Sales	64	715102.000	1187169.000	975369.219	16185.214	129481.712	1676
Valid N (listwise)	64						
		N	Minimum	Maximum	Mean	Std. Deviation	Variance
		Statistic	Statistic	Statistic	Statistic	Std. Error	Std. Deviation
SalesGrap	PPIDif2	39.000	0.017	0.064	0.039	0.003	0.016
CurSatDif		39.000	0.002	0.003	0.002	0.000	0.001
Penetration		39.000	68.675	88.910	76.888	1.084	6.767
PercentOfESales		39.000	0.027	0.075	0.047	0.002	0.014
Valid N (listwise)		39.000					2.007

Figure 7:

3

Figure 8: Table 3 :

4

			SalesGrap	PPIDif	Pearson	Correla-	SalesGrap	PRISaf	Dif	Penetration	Percent
			1				.775 **			.867 **	
SalesGrap											
CurSatDif											
Penetration											
PercentOfESales											

**. Correlation is significant at the 0.01 level (2 -tailed).

X. Outliers Identifying
I continued with graphical examination to visually detect missing data, outliers points.

[Note: *. Correlation is significant at the 0.05 level (2-tailed).]

Figure 9: Table 4 :

5

2016
Year
Volume XVI Issue V Version I
Global Journal of Management and Business Research () B

[Note: *. This is a lower bound of the true significance.]

Figure 10: Table 5 :

6

XII.

Figure 11: Table 6 :

8

Figure 12: Table 8 :

9

		Kolmogorov-Smirnov			Shapiro-Wilk			
		a	Statistic	df	Sig.	Statistic	df	Sig.
SalesGrap	PPIDif2		.145	39	.038	.902	39	.003
CurSatDif			.153	39	.023	.883	39	.001
Penetration			.225	39	.000	.851	39	.000
PercentOffSales			.124	39	.136	.929	39	.017

a. Lilliefors Significance Correction

Figure 13: Table 9 :

10

Figure 14: Table 10 :

11

According to ANOVA table 12 in this multiple linear regression model is a statistically significant predictor of the dependent variable, with p-value = 0,000 (which significantly below the 0.05 critical value).

Figure 15: Table 11 :

12

Model	B	Unstandardized Coefficients		Standardized Coefficients		Correlations		Collinear Statistics
		Std. Error	Beta	t	Sig.	Zero-order	Partial	
1	(Constant) 14922.523	222746.132		-	.002			
				3.210				
	Employer 1070.848	2897.795	.135	2.785	.007	-.728		.336 .081 .360
	GDPpop 2.728	.123	1.079	22.191	.000	.970		.943 .647 .360

a. Dependent Variable: Sales

Figure 16: Table 12 :

13

Figure 17: Table 13 :

14

Figure 18: Table 14 :

15

Figure 19: Table 15 :

16

Figure 20: Table 16 :

17

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	3.0339%	6.8710%	4.7077%	1.37117%	39
Residual	-.45409%	.76846%	.00000%	.35627%	39
Std. Predicted Value	-1.221	1.578	.000	1.000	39
Std. Residual	-1.241	2.099	.000	.973	39

a. Dependent Variable: PercentOfESales

Figure 21: Table 17 :

17

Figure 22: Table 17

316 [JeffJordan ()] , JeffJordan . <https://research.stlouisfed.org/fred2/series/B230RC0Q173SBEA#jeff.a16z.com>. Data Sources 2014. 12.

317

318 [Blaug ()] Mark Blaug . *Great Economists before Keynes*, (Brighton) 1986. Wheatsheaf.

319 [Goldberger ()] *Econometric Theory*, Arthur S Goldberger . 1964. New York: John Wiley & Sons. p. .

320 [Sullivan et al. ()] *Economics: Principles in action*, Arthur ; Sullivan , Sheffrin , M Steven . 2003. Upper Saddle River, New Jersey: Pearson Prentice Hall. 07458 p. 57.

321

322 [Stephens ()] 'EDF Statistics for Goodness of Fit and Some Comparisons'. M A Stephens . *Journal of the American Statistical Association* 1974. American Statistical Association. 69 (347) p. .

323

324 [Freedman ()] David A Freedman . *Statistical Models: Theory and Practice*, 2009. Cambridge University Press. p. 26.

325

326 [Households Income] *Households Income*, <https://research.stlouisfed.org/fred2/series/MEHOINUSA672N>

327

328 [Armstrong and Scott ()] 'Illusions in Regression Analysis'. J Armstrong , Scott . *International Journal of Forecasting* 2012. 28 p. 689.

329

330 [Bothma and Geldenhuys ()] *Managing E-Commerce in Business*. Cape Town, Botha Bothma , Peter Geldenhuys . 2008. South Africa; Juta. (Print)

331

332 [Harrell ()] *Regression Modeling Strategies. With Applications to Linear Models, Logistic Regression, and Survival Analysis*, Frank Harrell . 2001. (Read book)

333

334 [Monga ()] 'The Business Impact of E-Commerce'. Ruchi Monga . *Gian Jyoti E-Journal* 2012.

335 [Rodgers and Nicewander ()] 'Thirteen ways to look at the correlation coefficient'. J L Rodgers , W A Nicewander . *The American Statistician* 1988. 42 (1) p. .

336