

1 Automated Queue Management System

2 Md. Nasir Uddin¹, Md. Nasir Uddin², Md. Nasir Uddin³ and Md. Nasir Uddin⁴

3 ¹ International Islamic University Malaysia

4 *Received: 8 December 2015 Accepted: 31 December 2015 Published: 15 January 2016*

5

6 **Abstract**

7 Automated queue management system is a system that helps service provider to manage
8 customer in efficient way. The system can ease the customer flow management which is useful
9 for manager of the service provider. The purpose of this project is to develop an Automated
10 Queue Management System for organizing queuing system that can analyze the queue status
11 and take decision which customer to be served first. This project focuses more on the banks
12 queuing system, different queuing algorithm approaches which are used in banks to serve
13 customer and the average waiting time. This queuing architecture model can switch between
14 different scheduling algorithms according to the testing result i.e. the average waiting time by
15 using two different queue control systems, which have developed. There are several process
16 undergo, which control by Intel Galileo Microcontroller that is software-compatible with the
17 Arduino software development environment. Finally, the systems have been tested under
18 different conditions to evaluate its performance.

19

20 *Index terms*— two different queue control systems, which have developed.

21 **1 Introduction a) Background**

22 nowadays, customer service oriented companies facing difficulties of lengthy queues. These problems often occurred
23 in the banks, post office and airport and it became worsen when the time reached peak hour. The improper
24 management of such queues will cause tension and stress among customers and employees. Customers will tend
25 to shift to other service companies that provide better services and it reduced job satisfaction of the employees.

26 According to Bain & Company net, a global management -consulting firm, "a customer is four times more
27 likely to defec to a competitor if the problem is service related than price or product related". Moreover, Lee
28 Resources International net, a general business consulting stated that for "every customer complaint there are
29 26 other unhappy customers who have remained silent". Thus, any companies need a provide good services in
30 order to attract customers to attain sustainability doing business.

31 In general, queuing is a line of people waiting to be serve and the movement is from a central to a specific
32 place. Thus, a queue management system must handle and organized queue formation in the most efficient way.

33 **2 b) Problem Statement**

34 Many companies provide queue management system for controlling queues of people in various situations and
35 locations in a queue area. Most of the techniques used are manually for a small space and simple flow. On the
36 other hand, automated queue management system deal for a larger space and complex flow. These can be see
37 widely used in banks, hospitals or clinics and post offices.

38 Bylayat, Nahid, Moqbull and Habibur (2011) had designed a Microcontroller Based Electronic Queue Control
39 Systems. The aim of that designed systems is to maintain a queue with order and efficiency. There are two
40 different queue control systems which have been implemented with slightly different queue control systems which
41 have been implemented with slightly different features in the research which are EQC system-1 and EQC system-
42 2, EQC system-1 displays token number and service counter number whereas EQC system-2 display token number
43 individually in each service counter with separate displays.

8 C) QUEUE MANAGEMENT TECHNIQUES

44 The fundamental of the designed system is similar like the one, which has been use broadly todays in queue
45 area. The flexibility is that customers have the flexibility of being processed by more than one service point and
46 service points possess the capability of processing more than one customer class. However, the system cannot
47 integrate to the number of customers per certain time. The sytem cannot change and remain it is when there
48 are not much customers in the waiting area and when there are crowded of customers in the waiting are.

49 Therefore, the purpose of this research is to design and built an automatic queue management system that
50 has more flexibility when dealing with its surrounding.

51 3 c) Research Objectives

52 The aim of this research is to develop an Automated Queue Management System in a way that solve queuing
53 problems. The objectives of this project to:

54 1) Investigate the current approaches for queue management system. 2) Design a working system for automated
55 queue control system. 3) Implement the system using mechatronic solution. 4) Evaluate the system for
56 effectiveness.

57 4 d) Research Questions

58 The study is conduct based on these two research questions:

59 1) Which surrounding should be use as model to develop an automatic queue management system? 2) What
60 are the parameters should take in order to achieve optimal performance in queue system?

61 5 e) Project Scope

62 The Automated Queue Management System is design to manage certain customers with single department and
63 multiple counters. There are three operations, which customers can choose i.e. Service A, Service B, Service
64 C and three customer counters that provide services i.e. Counter 1, Counter 2 and Counter 3. The related
65 information of this system will be displayed at the display module i.e. Liquid Crystal Display and sound module
66 i.e. Buzzer.f) Research Methodology g) Gantt Chart Chapter 2 II.

67 6 Literature Review a) Introduction

68 A queue management system is the organization of queues of people within a retail or public sector department.
69 It can be either reactive through a system that can organize the existing queue or proactive through queue
70 management statistics gathering system, so that the trends can be identified and anticipated. People that join
71 queue in a standing line queue are direct to the next position by the system or be given issued with a ticket.
72 With a ticketed system, customers are took out of the standing line queue, which can give comfort and less stress
73 for the customers as well as their turns are not neglect. This queuing environment is and essential part of our
74 daily lives and it is important for manufacturer to build the most cost-effective queuing solution.

75 7 b) Types of Queue

76 There are two types of queue, which are structured and unstructured queues. Structured queue is a queue in a
77 fixed form and people that included are in predictable position. We can see this at supermarket paying counter
78 and some other retail locations such as banks and post offices. This type of queue systems often being set up
79 to manage ticket ranking for a service with identification and thus enable a stress-free waiting. Extending the
80 different possibilities, some of this system is planned reception by appointment or remotely rank allocation on
81 Smartphone or through SMS.

82 Whereas, unstructured queue is where people form a queue in unpredictable and varying locations and
83 directions. This is often the case in some forms of retail, taxi queues, ATMs and at period of high demand
84 in many situations. Some of the existing solutions are rank allocation for service, pages or RFID badges or
85 simply by reading the customer card. In fact, it is hardly to implement a way of structuring these queues to be
86 successful. The reason is that one cannot easily calculate the behavior of man.

87 8 c) Queue Management Techniques

88 Various queue management techniques exist are physical barrier, signage and signaling systems and automatic
89 queue measurement system.

90 Physical barrier is aim at guiding queue formation and organizing it in a neat way. While signage and
91 signaling systems are aim to provide information to people, queuing and aid efficient queue formation flow as well
92 as setting service expectations. Differently, automatic queue measurement system uses a variety of measurement
93 technologies, which predict and measure lengths and waiting times, which provide management information to
94 help service levels and resource deployment.

95 9 d) Queue Management Concept

96 Many researches have done previously on the queue management concepts such as Shortest Processed First
97 9SPF), First Come First Serve (FCFS), Single Queue (SQ), Multiple Queue (MQ), Diffuse Queue (DQ) and Head
98 of Queue (HQ).

99 SPF works as scheduling policy that chooses lesser time execution to process first. In a supermarket, a specific
100 paying counter only processes transaction which customer buying goods less than 10 goods. SPF can work well
101 because of its simplicity and minimizes the average amount of waiting time for each process. However, the setback
102 is that it requires long time to complete if short process are continually added and customers do not perceive the
103 right degree of fairness from the system. It is important to explain why customers are being served in that order
104 and ensure the understanding of customers to see the logic of this alternative approach.

105 On the other hand, FCFS is a method that deals the oldest entry being processed first. FCF's behavior is where
106 people leave the queue in the order, which they arrive. It is the most fairly service provision where all customers
107 think of themselves as equal.

108 The single queue, SQ is the familiar snake format. Each person waiting is served in turn and the format
109 discourages pushing in. The queue also provides visible reassurance to customers that they will be served fairly
110 while the queue is progressing.

111 Besides that, the multiple queue, MQ is the improvement of SQ, it is essential to use this method when
112 handling larger amount of people. This queue is the format that always being used at the supermarket.

113 Other than that is the diffuse queue, DQ, which has no formal queue line but customers register place in

114 10 Global Journal of Management and Business Research

115 Volume XVI Issue I Version I

116 11 Year ()

117 A the process with a ticket. Figure 2.1 is the example of using this method.

118 Last is the head of queue, HQ, which places the next person to be served waits in a single queue environment.
119 This method is significant when the number of checkout is higher than five. It is vital that customers are able to
120 see along the line of service position to avoid significant gaps in service provision. In order to maintain fairness
121 in this system, there are several rules have been set: ? Queue must be fair and be managed systematically that
122 cannot allow to descend into a chaotic situation.

123 ? Perception of waiting time should be managed.

124 ? The process must be clearly identified; start and ends must be visible. ? The process must include positive
125 feedback of progress.

126 12 e) Advantages of Queue Management System

127 Queue management system gives benefits either to customer service provider or to the customer itself. The
128 benefits can be directly or indirectly to the system. There are:

129 ? Keeps track and forecast the flow of customers.

130 ? Optimum utilization of staff forecast.

131 ? Constant monitoring the staff's performance.

132 ? Enhance productivity and morale of the staff, as operations were efficient and systematic. ? Gives flexibility
133 in dealing with customers.

134 ? Increase service reliability, as customers are treated fairly and efficiently. ? Producing statistical reports,
135 which facilitate top management's decision making process.

136 13 f) Existing Queue Management System

137 There are many products available on the market produced by many queue management companies for delivering
138 optimum customer service, which are Stand Alone Queue System and Centralized Control Queue System.

139 14 i. Stand Alone Queue System

140 Stand Alone Queue System (SAQS) design based on First Come First Serve, FCFS queue model, where there is
141 only one service counter operation. All customers will be managed at the single counter. This system operates by
142 calling or displaying number in sequential or randomized order and the customers will be treated fairly. The SAQS
143 is performing well in a single department, service operation environment such as clinic.

144 15 ii. Advance Queue System

145 Advance Queue System (AQS) based on SAQS design where additional service counters are added to give flexibility
146 in queue system process. This system can support up to 32 service counters and additional of 60 counters. It
147 also can provide useful queue features as well as comprehensive reports. Besides that, it allows manager of
148 real-time monitoring status for the queue management analysis. AQS is performing well in bank, hospital or any
149 organization that has multiple department service operation.

150 16 iii. Centralized Control Queue System

151 Centralized Control Queue System (CCQS) design is use for higher range of customers in different department.
152 This system has the capability to support up to 20 departments which each department can have up to 32 service
153 counters and 60 counters. CCQS is network compatible because each department has been located at different
154 part of a building or even in geographical area. Thus, CCQS is connect through LAN or Internet and it also
155 provide real-time status monitoring.

156 17 g) Customer Flow Management

157 There are few manager of service provider know what happens with their customers throughout the whole
158 interaction process in real-time. If the supply and production managers know the flow of material and product
159 in detail, why does not the head of operations know the flow of customers equally well? Is the flow of customers
160 less important than the flow of material and products? Is the flow of customers more difficult to monitor and
161 control? By knowing absolutely the customers is a key success factor for any service provider that wants to
162 be competitive. Therefore, Customer Flow Management (CFM) is managing the flow of customers and their
163 experience from initial contact to final service delivery.

164 The Customer Flow Management process consist of several phases including pre-arrival, arrival, queuing or
165 waiting, serving, post-serving and managing as illustrated in figure 2.14. It is view of the entirety of the customer
166 service operation, the resulting framework for making informed business decisions and the frames the boundaries
167 of CFM.

168 18 i. Pre-arrival

169 CFM can start before the customers physically visits the shop or service center by implementing a method to
170 book appointments before arrival. This reduces the time spent waiting by the customer and produce a positive
171 impact on the customer's service experience.

172 19 ii. Arrival

173 Customers need to be place in an appropriate queue on arrival. Customer Flow Management stresses the
174 possibility of segmenting the customers in different queues rather than entering all customers in the same queue.

175 iii. Queuing/waiting Most customers will endure a period of waiting after queue entry. A balanced and
176 controlled waiting period is the desired optimum results of any managers.

177 No one wants to have a completely empty waiting area as it reflected that you are overstaffed or impression of
178 abandonment. Equally, too many customers waiting is simply as off-putting. In the case of a hospital or public
179 service center, certain citizens might not accept it as they can demonstrate this during elections. CFM can help
180 managers get the balance rightly by improving staff planning and by adding more flexibility to the process. iv.
181 Serving When calling the customer forward, staff can start preparations if the service chooses to identify and
182 tracking customer's history before the customer actually arrives at the service point.

183 v. Post-serving After a customer has been serve, a case handling function can continue to manage the case
184 throughout its lifetime if needed and each step is document and process.

185 vi. Managing Managers can uses the gathered data in CFM process to evaluate the current processes.
186 Reports can be generate on employee-customer interactions, service times and customer wait times. Operational
187 inefficiencies can be identified and addressed through process changes or training.

188 20 System Design a) Conceptual Design

189 Banks have been one of the major units of the public for the past years. Many researchers try to develop new
190 technology in order to increase customer satisfaction. Thus, an active research should be focuses on analyzing
191 the queues to optimize their operations, which customer's waiting time can be reduce.

192 In this research paper, an automated queue control system has been develop for organizing queue in banking
193 for a low-cost and efficient way. The system can analyses the queue status and take decision which customer to
194 serve, as the factor of the average waiting time is take into consideration.

195 21 b) System Design Overview

196 The scenario of the proposed system can be described as shown in the Figure ???.1. Customer will select required
197 services either Service -A, Service-B or Service-C and gets an acknowledgement receipt. The receipt consists
198 of information like token number, service selected, date, time and retail or organizational name. The customer
199 proceeds towards the service counter when his token number displayed on the screen. Therefore, instead of
200 worrying about their places in the line, customers can relax and have a great customer service experience.

201 The automated queue control system can be divide into several process. First, customers will select require
202 service and proceed to the waiting area. The system will records the customers token number with the type of
203 service selected. Then, the system will analyzes the data collected and decides customers turn to be serve. At
204 the waiting area, a display will be place and shows customers token number and service counter number that

205 indicate which customer to be serve next. Lastly, different display located at the different service counter will
206 display current customer's token number which is now being serve.

207 **22 c) Component Selection i. Intel Galileo Gen-2**

208 The Intel Galileo board is a microcontroller board based on the Intel Quark SoC x1000 application processor, a
209 32-bit Intel Pentium brand system on a chip (SoC). It is the second-generation board based on Intel Architecture
210 design to be hardware and software pin-compatible with shields designed for the Arduino Uno R3.

211 In addition to Arduino hardware and software compatibility, the Intel Galileo board has several PC industry
212 standard I/O ports and features to expand native usage and capabilities beyond the Arduino shield ecosystem.
213 A full-sized mini-PCI Express slot, 12V power-over-Ethernet (PoE) capable, Micro-SD slot, 6pin FTDI header,
214 USB host port, USB client port and 8 Mbyte NOR Flash come standard on the board.

215 **23 ii. Push-Button**

216 A push-button is a simple switch mechanism for controlling some aspect of a machine. It is usually made of
217 hard material like plastic or metal. To accommodate the human finger or hand, the surface is usually flat. The
218 push-button is required for this project as input from the arriving customers and as the control pendant at the
219 service counter.

220 **24 iii. Liquid-Crystal Display**

221 A liquid-crystal display (LCD) is a flat panel that uses the light modulating properties of liquid properties of
222 liquid crystals. Liquid crystals do not emit light directly. LCDs are available to display arbitrary images or fixed
223 images which can be display or hidden, such as preset words, digits and 7-segment display as in digital clock.
224 They use the same basic technology, except that arbitrary images are made of a large number of pixels, while
225 other displays have larger elements. For this project, LCD is use for displaying token number at ticket counter,
226 waiting area and service counter.

227 **25 iv. Buzzer**

228 A buzzer or beeper is an audio signaling device, which may be mechanical, electromechanical or piezoelectric.
229 Typical uses of buzzers and beepers include alarm devices, timers and confirmation of user input such as a mouse
230 click or keystroke. For this project, buzzer is use for alarming which indicate of next customer service at the
231 service counter.

232 **26 v. Ds307 Real-Time Clock Module**

233 The DS1307 Real-Time Clock is a low power, full binary-coded decimal (BCD) clock plus 56 bytes of NV SRAM.
234 The clock provides seconds, minutes, hours, day, date, month and year information. Address and data are
235 transferred serially via a 2-wire, bi-directional bus. The DS1307 has a built-in power sense circuit that detects
236 power failures and automatically switches to the battery supply. Meanwhile, the DS1307 happens to possible the
237 getting of customers arrival time data. which is important for the system analysis.

238 **27 vi. PCF8574N**

239 The PCF8574N is an 8 bits I/O port expander that uses the 12C protocol, which communicates using a 2-wire
240 serial interface i.e. one wire is a serial clock (SCL) and the other is for serial data (SDA). The reason for choosing
241 the PCF8574N is to minimize the using of Galileo ports for LCD's circuitry.

242 **28 d) Complete Circuit**

243 All the hardware components are connect together as shown in the figure below.

244 **29 e) Bill Of Material**

245 **30 Result and Discussion**

246 **31 a) Analysis on Input Module i. Push Button**

247 There are total of six push buttons used for connecting the Galileo. The pins used are digital pin 2 to digital
248 pin 7. Push buttons for digital pin 2, 3 and 4 used for collecting data from customers. They will choose either
249 service A, B or C. In contrast, push buttons for digital pin 5, 6 and 7 are place at the service counter. Teller will
250 use it to call for next customer to provide require service.

251 The way a push button works with Galileo is that when the button is pushed, the voltage will goes Low, which
252 in turn Galileo read this and reacts accordingly. A pull-up resistor is use to keep the voltage HIGH when the
253 push button is not being press. In other words, a small amount of current is following between VCC and the
254 input pin (not ground). thus the input pin reads close to VCC.

255 **32 ii. DS1307 RTC Module**

256 The DS1307 RTC module works very well in keeping the time. However, the external temperature can affect the
257 frequency of the oscillator circuit, which drives the DS1307's internal counter. This may sound like a problem,
258 however it usually result with the clock being off by a round five or so minutes per month. Besides that, proper
259 ventilation is use for the container in this project.

260 **33 b) Analysis on Output Module i. LCD**

261 A standard 16x2 LCD is use but using just two pins. The way it can achieve by the PCF8574, an I/O expander
262 that communicates with Galileo by 12C. With this IC, two ports of Galileo can control up to eight digital I/O
263 ports. In the 12C protocol, each IC has different address. In this project, first four of the address is use as there
264 are four different LCDs used.

265 ii. Buzzer A piezo buzzer will makes a small "click" when voltage is applying to it. If the voltage is turn on
266 and off hundreds of times per second, the piezo buzzer will produce a tone. Then, if a bunch of tones is string
267 together, it will produce a music. Simple music will ring when a service counter calls a customer.

268 **34 c) Algorithm Development i. Rule Based System**

269 Rule based system is a system. which problems can written in the form of IF-THEN rules. The problem are
270 usually is not large. If there are too many rules, the system can become difficult to maintain and can suffer a
271 performance hit.

272 In this project, there are three rules will be looking at before deciding which one will be implemented in the
273 system. There are:

274 1) Rule 1: All service counters are multipurpose type. 2) Rule 2: Service counter 1 only for customer choosing
275 Service-A. 3) Rule 3: Each service has one service counter.

276 In addition, two parameters set for all the rules, which are Service-A, B and C have duration to complete 60sec,
277 120sec and 180sec respectively. The second parameter is that customer is assume to follow this arrangement:
278 "customer-A customer-B customer-C customer-A customer-B customer-C?" Figure ???.4 shows that Rule 1 is the
279 least time consuming to finish all the customers and thus the rule will be use throughout this project.

280 ii. Queuing System Model This part presents a different technique for queue management system in banks
281 proposed by Ahmed and Huda (2011). The technique can build an automated queue control system by using the
282 DQ concept. To select the next customer to be serve during a specific period, the system chooses and appropriate
283 algorithm among more than one scheduling algorithm, which are FCFS and SPF.

284 Moreover, to achieve the best waiting time for all the customers that are waiting to be serve, it is depend on
285 the testing result for selecting the scheduling algorithm. To achieve this, additional components to the traditional
286 queue management system are need.

287 In customer area, customer selects required service at the ticket counter and waits until the ticket number
288 shown in a display.

289 In queuing area, the system chooses one of the waiting customers by using the queuing algorithm that is choose
290 by the testing area.

291 In testing area, the system test and compare all the result for the expected waiting and response time then
292 selects the best algorithm.

293 All the needed scheduling algorithms, the testing result and the number of customers are stored in this area.
294 The testing result and the customer's numbers are save temporarily.

295 In service area, the system serves the customer according to the different services that a bank can gives such
296 as transaction, open account and balance. Each service has their own specific time.

297 **35 iii. Result Analysis**

298 To test the performance of the new proposed system, several simulations were carry. A randomized generated
299 number is use to generate a sequence of customer's arrival time and option of services that they can choose. The
300 different services are open an account, transaction and balance with the period of each services which are 15,
301 10 and 5 minutes respectively. In this proposed system, two scheduling algorithm are used which are FCFS and
302 SPF. Differs to the ordinary system (FCFS) which is usually being use in the most of the banks queuing system.
303 The proposed system will test the queuing system using testing algorithm every specific period, consider in this
304 research to be 15 minutes. Then, make comparison of the results of waiting time and average waiting time. The
305 results shown in figure ???. Through the extensive experiments conducted, the primary goal is to determine the
306 ability of the new queuing system against the ordinary queuing system. Figure ???.7 shows that the new approach
307 decreases the average waiting the time compared to the ordinary queuing system while Table 3 shows the average
308 waiting time for the ordinary queuing system and the new queuing system.

309 **36 Conclusion and Recommendation a) Conclusion**

310 Design and development of Automated Queue Management System starts with the understanding of the queue
311 system itself. which is very crucial to broaden the horizon of understanding. Then, the consideration of the
312 control strategy and component to be use plays important role as guidelines to accomplish this project.

313 In addition, several articles have been review to investigate the current approaches for queue management
314 system. Although the current approaches have proven to ease and give benefits to service providers, yet there
315 are space of improvement in order for a queue system function efficiently.

316 Besides that, the early queue system design for this FYP (implemented using mechatronics solution) has been
317 present on the chapter 3 and several analysis were carry on the chapter 4 of this report.

318 **37 b) Limitation**

319 The assumption of the queuing theory may be too restrictive to be able to model real-world situations exactly.
320 The mathematical models often assume infinite number of customers, infinite queue capacity or constant inter-
321 arrival or service times (same service type), when it is quite apparent that these bounds do not exist in reality.
322 In other words, the theoretical solution may prove insufficiently informative to be useful.

323 **38 c) Recommendation**

324 There are some improvement can be made such as addition of sensors of cameras that can detect customers at a
325 certain time. This method can improve the efficiency of a queue system as it alerts manager to counter fast on
326 the situation. Lastly, the system can being made to become a product as in this project only being made as for
research and learning.^{1 2 3}

47

Figure 1: Fig. 4 . 7 :

327

¹© 2016 Global Journals Inc. (US)

²© 2016 Global Journals Inc. (US)

³Automated Queue Management System

3

Component	Bill	Expected Price (RM)
Intel Galileo Gen-2	1	RM 245.00
LCD (16x2)	4	RM 80.00
PCF8574N	4	RM 32.00
Wire Jumper	100	RM 13.60
Trimpot 10K	4	RM 8.00
DS1307RTC Module	1	RM 6.30
Plastic Container	1	RM 5.90
6x6x1 Push Button 4 Pin	6	RM 3.30
Screw and Screw PCB Stand	4	RM 2.80
Buzzer 6-12v	1	RM 3.00
Resistor 10k?	8	RM 0.40
Total		RM 400.30
Chapter 4		
IV.		

Figure 2: Table 3 :

c. ? Testing Area Testing 3 rd 15 minutes using the two scheduling algorithms
FCFS
C9 C10
75 80 SPF 90

	C6	C7
	75 80	85
		?
		Ser-
		vice
		Area
Year		
36		
Volume	?	
XVI Issue	Cus-	
I Version I	tomer	
	Area	
() A		
Global	FCFS	C3 C4 Fig. 4.6 : Ordinary Queuing System Gantt chart C5 C6 C7 C8 C9 Testing first
Journal of	C1	?
Management	Queue	b.
Business	Area	
Research	C2	
	FCFS	
	C6	C7
	60 15	20
	SPF	
	C6	C7
	60	65 70

Figure 3:

5

Time Slice	Average Waiting Time and Algorithm (Ordinary Queuing System)	Average Waiting Time and Algorithm (New Queuing System)	Difference the between Ordinary and New Algorithm
1 st Group	16.4/FCFS	14.4/SPF	2
2 nd Group	42.5/FCFS	42.5/FCFS	0
3 rd Group	47/FCFS	43.66/SPF	3034
Total Average Waiting Time	32.75	31.083	1.667

Equation 1 used to calculate the waiting time for each customer and Equation 2 used to calculate the average waiting time for each group of customers (Willin, 1999).

$$CWT\ I = SSTC\ I - ATC\ I$$

Where:

CWT is a Customer Waiting Time

SSTC is a Start Serving Time for a Customer

ATC is Arrival Time for a Customer

I is the number of customer

$$AWT = (\sum CWT_i) / TN$$

Where:

AWT is Average Waiting Time

CWT is a Customer Waiting Time

TN is total number of customer served

i is the number of customer

Figure 4: Table 5 :

328 [Willig ()] 'A Short Introduction to Queueing Theory'. Willig . *Telecommunication Networks Group Sekr. FT 5-2*,
329 (Berlin) 1999. Technical University Berlin

330 [Ab ()] Q-Matic Ab . *an Introduction to Customer Flow Management, Version L1.5*, 2008.

331 [Sanjay ()] *an Introduction to Queueing Systems*, Bose K Sanjay . 2002. Springer.

332 [Ahmed and Huda ()] *Automatic Queueing Model for Banking Applications*, S A Ahmed , K T Huda . 2011.

333 [Hossain et al. ()] 'Design and Development of Microcontroller Based Electronic Queue Control Systems'. Md
334 B Hossain , Md N Hossain , Hossen , . M Md , Md H Rahman . *Proceeding of the 2011 IEEE Students'*
335 *Technology Symposium*, (eeding of the 2011 IEEE Students' Technology Symposium) 2011.

336 [Tocci ()] *Digital Systems*, R J Tocci . 2000. New Jersey: Prentice -Hall. 7. (th edition)

337 [Zhang and Tay ()] 'Discrete-event simulation of queueing systems'. No & Zhang , Tay . *Ministry of Education*,
338 (Singapore) 2000. (published in the Proceedings of the sixth youth conference)

339 [Lustsik ()] 'E-Banking in Estonia: Reasons and Benefits of the Rapid Growth'. O Lustsik . *Kroon and Economy*
340 2003. 3 p. . University of Tartu

341 [Mobarek ()] 'E-Banking Practices and Customer Satisfaction-A Case study in Botswana'. A Mobarek . *th
342 Australasian Finance & Banking Conference*, 2007. 20.

343 [Fazli Alias ()] *Front Desk Customer Service for Queue Management System*, Mohamad Fazli Alias . 2007.

344 [Goluby and Preston Mcafee ()] B Goluby , R Preston Mcafee . *Firms, Queues and Coffee Breaks: A Flow
345 Model of Corporate Activity with Delays*, 2011. Springer-Verlag. 15 p. .

346 [Maister ()] David H Maister . *the psychology of Waiting Lines*, 2005.

347 [Gurumurthi and Benjaafar ()] *Modelling and Analysis of Flexibile Queueing Systems*, S Gurumurthi , S Benjaafar
348 . 10.1002/nav.20020. 2004. Wiley Periodicals, Inc. DOI.

349 [Koole and Mandelbaum ()] 'Queueing Models of Call Centers, An Introduction'. G Koole , A Mandelbaum . *Ann
350 Oper Res* 2002. 113 p. .