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Abstract- Student Evaluations of Instruction (SEI) are an 
important issue in countries like the USA, where the evaluation 
results can impact professional promotion chances and salary 
of faculty. According to Seldin [11], the percentage of 
American colleges using SEI grew from 29% in 1973 to 68% 
in 1983 and to 86% in 1993. Consequently, the adequacy of 
SEI has been examined extensively, and many statistical 
studies have been published. Non-instructional factors, 
which cannot be influenced by instructors, may bias the 
evaluation rating and should be identified and eliminated for 
a fair comparison. But in many cases, a mere linear 
regression of SEI on such potential factors is not adequate. 
This paper proposes a proper approach to such situations, 
namely Generalized Linear Models (GLM). The estimation 
algorithm will be presented step-by-step so that it can be 
replicated with own data. Eventually, the estimated model will 
be used to eliminate the extrinsic impacts. 
Keywords: evaluation, extrinsic impacts, generalized 
linear models, regression, student age. 
 

I. Introduction 
tudent Evaluations of Instruction (SEI) are very 
widespread and common practice in countries, 
where the evaluation results are applied for 

professional promotion chances and salary of faculty. In 
countries like Germany, SEI are used as an instrument 
for the internal quality management and teaching 
improvement process. This instrument is also of growing 
interest in the accreditation process of study programs 
and universities. 

The intrinsic impact factors of the evaluation 
ratings are the single items of the evaluation 
questionnaire, which are answered by the students. But 
many statistical investigations have shown that there are 
undesirable extrinsic factors, like class size or the 
quantitative exposition of the course, which are 
noninstructional by nature and, therefore, should be 
eliminated for a fair comparison of the evaluation ratings. 
Costin, Greenough and Menges [2] presented a review 
of empirical studies regarding student ratings. They con-
cluded that SEI can provide reliable and valid information 
on the quality of courses and instruction but for further 
interpretation  extrinsic  factors  should  be  taken  into  
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account. Already Heilman and Armentrout [6], Lovell 
and Haner [8], McDaniel and Feldhusen [9] and 
Hamilton [5] have shown that teachers of large classes 
may receive lower ratings. Hoefer, Yurkiewicz and Byrne 
[7] assessed significant differences between 
undergraduate and SEI. For that matter, 
Brightman [1] states that it is unfair to compare a faculty 
member teaching a required core class with another 
faculty member teaching a senior–level elective course. 
Peterson, Berenson, Misa and Radosevich [10] have 
recommended to establish appropriate sets of norming 
reports in which possible semester factor effects are 
considered. 

It is tempting to perform a linear regression of 
the evaluation ratings on the non–instructional factors 
by the least–squares principle and to use the 
estimated model for the compensation procedure. But, 
this will be admissible, if the latent variable is 
normally distributed. This can be tested by using the 
residuals from the regression as a proxy for the latent 
variable. Frequently, a dependent variable, like 
evaluation ratings, is skewed to the right. This, in turn, 
usually prevents the residuals from being normal. At 
least, this occurs with our data. 

Therefore, our investigation focuses on a proper 
methodical approach of estimating a non–linear model. 
After a description of the data we shall present the 
Maximum–Likelihood (ML) estimation of a so–called 
Generalized Linear Model (GLM) step–by–step. The 
presentation is sufficiently detailed, so that the reader 
can, for instance, apply the procedure to own data 
with a matrix-based programming software like 
MATHLAB or GAUSS. We restrict our presentation to 
one non-instructional factor, namely 'student age' or, 
more precisely, the semester counter of the evaluated 
course. The proposed procedure can easily and 
obviously be extended to more non-instructive factors. 
Eventually, we shall show how to use the estimated 
model to correct actual and future evaluation ratings 
properly. 

II. Data 
We have collected n = 140 evaluation ratings zi 

from seven-semester Bachelor programs from the 
Business Unit of a German University of Applied 
Sciences together with the semester counter (one to 
seven), to which the evaluated course regularly belongs. 
The evaluation ratings are means from a five–point Likert 
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scale, where the choice 'one' is best and 'five' is worst.
Unfortunately, the evaluation ratings are not normally
distributed. More precisely, the standardized measure of
skewness is 1.05 and the standardized measure of
kurtosis is 4.51, indicating that the dependent variable is
skewed to the right with a kurtosis much larger than
that of the normal distribution. This results in non–

normal residuals from a linear least-squares regression.
And this prevents inferential conclusions of such a 
regression, like t–values and p–values. The usual 
methodology is no longer valid in this case.

Luckily, a Box Cox transformation of the
evaluation ratings zi can convert the ratings
in (approximately) normally distributed values yi:

III. Methodology and Exemplary Results

a) GLM estimation
The most general form of a regression model

explains a variable by the sum of its (conditional)
expected value and of some noise:

X denotes the design matrix. In our example, it
consists of a first column of ones, representing the
constant, and a second column with the semester
counts. Further columns may be appended for
additional non–instructional factors. The latent variables
εi are independent and identically (iid) distributed, 
representing the noise.

In a GLM, the dependent variable must belong
to the exponential family and its expected value, given
the design matrix X, may be a non–linear function h of 
the linear predictor Xβ:

In our example, the column vector β consists of
two unknown parameters, β0 and β1, and h is the
inverse of the link function g and is called 'response
function'.

The following ML estimation procedure is
explained in more detail in Fahrmeir, Kneib, and Lang
[4]. Let xi be the i-th row of the design matrix X. Then we
need the following symbols:

Consequently, the following diagonal matrices 
depend on β:

The goal is to receive a solution of the non–
linear equation system s(β) = 0, where s(β) is the 

functional vector of partial derivatives of the log–
likelihood function:

Now, the ML estimator may be iteratively
approximated by the following equations:

yi := g(zi) :=
zλi − 1

λ
∼ N(µ, σ2).

yi = E (yi |X ) + εi , εi ∼ N(0, σ2)

ηi := x ′iβ, µi := h(ηi), di :=
dh(ηi)

dηi
, wi :=

d2
i

σ2

y := (y1, ... , yn)
′, µ := (µ1, ... ,µn)

′

D := diag(d1, ... , dn), W := diag(w1, ... ,wn)

s(β) =
∂l(β|y ,X )

∂β
= X ′D(y − µ)/σ2

β̂(k+1) = (X ′W (k)X )−1X ′W (k)ỹ (k)

with ỹ (k) := X β̂(k) + D−1 · (y − h(X β̂(k)))

µ = E (yi |X ) = h(Xβ)

The value of λ, which minimizes the absolute ske
wness of the transformed variables can be calculated
numerically and is about 0.45 for our data. If we apply
the rounded value 0.5, then we receive a standardized

measure of kurtosis of about 2.85. The hypothesis of
normality for the transformed variables yi cannot be
rejected by any test.
D'Agostino, Belanger, and D'Agostino Jr. [3] yields a p–
value above 90%. The transforming function g is called 
'link function'.

The normal distribution belongs to the
so–called 'exponent ial family'. This admits the
estimation of a GLM, which will be specified in the next 
section.

measure of skew-ness of about 0.03 and a standardized

The skew-ness–kurtosis test of
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We have started the iterations with the least–
squares estimator 

In order to estimate σ2, which depends on , we
first have to eliminate duplicate rows in X. We denote the
reduced design matrix by . Note, that in our example it

has just seven rows due to the seven semester counts.
The yi have to be averaged to within the
seven groups of identical rows of X. Let n j denote the
number of observations in group j. Then, the variance 
can be estimated in each step of the iteration:

Here, p is the number of columns of X, in our 
example: p = 2.

Table 1 shows the five iterations, which are 
needed for convergence in our example.

Table 1 : Iterations of the Fisher–Scoring algorithm

Therefore, we receive the following estimated model:

The residuals from this model are clearly
normal. Thus, they can be 'studentized' in order to

eliminate outliers. In a first step, the residuals ε̂ i have to
be 'standardized':

In a second step, the standardized residuals will 
be transformed into a Student distribution:

We choose to define an outlier as an
observation with an absolute studentized residual
above the percentage point of order 0.975. This yields a
5% probability of an error of first kind. In our example we

have excluded ten observations leading to n = 130
observations, to which the whole procedure is applied
again. This final estimation yields:

b) Model diagnostics
For model diagnostics, we can test the

hypothesis H0 : Cβ = c by the asymptotically
distributed Wald statistic:

where r is the rank of C and X′WX is the Fisher
information matrix. In our example, the Wald statistic for
H0 : = 0 amounts to 34.32 with a p-value of almost 

σ̂2(β̂(k+1)) =
1

7− p
·

7∑

j=1

nj ·
(
ȳj − h

(
x̃ ′j β̂

(k+1)
))2

k β̂
(k)
0 β̂

(k)
1 s(β̂

(k)
0 ) s(β̂

(k)
1 )

1 0.1519 −0.0307 −0.1772 −0.6619
2 −0.2679 −0.0419 −0.1482 −0.5554
3 −0.4696 −0.0502 −0.1323 −0.5017
4 −0.5006 −0.0523 −0.0166 −0.0651
5 −0.5012 −0.0524 0.0000 0.0000

r ∗i := ri ·
√

n − p − 1

n − p − r 2i
∼ tn−p−1

ŷ = h(X β̂) with β̂ = (−0.5078, −0.0555)′

w = (C β̂ − c)′(CF (β̂)−1C ′)−1(C β̂ − c) ∼ χ2
r

zero. And the Wald statistic for H0 : = 0 amounts to 
6.79 with a p-value of 0.0091. Thus, both coefficients
are highly significant.

ri :=
ε̂i

σ̂ ·
√
1− hii

with hii = x ′i (X
′X )−1xi

ŷ = h(X β̂) with β̂ = (−0.5012, −0.0524)′

β̂(0) = (X ′X )−1X ′y .

X̃

β

y j , j= 1, ... 7,

χ2
r –

F (β̂) = β1

β0
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The ML estimator is (approximately) normally
distibuted with covariance matrix . Then, the
transformed variable y may be estimated or predicted 
like this:

c) Back transformation
Eventually, we have to come back to the

original evaluation ratings zi. To this end, we apply a
Taylor series approximation of the response function h, 
centered at 

The Taylor series approximation of the response
function enables the conclusion for the evaluation 
ratings:

Because the expectation values of odd powers
in the Taylor series are zero, the approximation error
(with some ϑ ∈ [0, 1]) is limited to:

This may be imagined to be negligible.
Table 2 shows the estimated evaluation ratings 

in the last column for each group of identical co–
variables:

Table 2 : GLM–estimated evaluation ratings

It is clearly seen that the expected ratings in the 
last column are falling, and therefore getting better, with
raising semester count in the third column. Thus, 
advanced students tend to be more patient with 
instructors.

d) Compensation
In the simple linear model , the

elimination of the impact of the 'extrinsic' factors in X is

realized by the correction of the mean value of the
dependent variable by the individual residual ε• of an
actual or future observation 

h(y) = (1− y/2)−2

≈ h̃(y) := (1− µ/2)−2 + (1− µ/2)−3(y − µ)+

3

4
· (1− µ/2)−4(y − µ)2

ẑ = E (z |X ) = E (h(y)|X ) ≈ E (h̃(y)|X )

= (1− µ/2)−2 +
3

4
· (1− µ/2)−4 · V (y |X )

= (1− h(X β̂)/2)−2 +
3

4
· (1− h(X β̂)/2)−4 · σ̂2(β̂)

∣∣∣∣
h

′′′′

(ϑy + (1− ϑ)µ)

4!
· (y − µ)4

∣∣∣∣ < 0.0004

i X̃i ,1 X̃i ,2 ŷi E (zi |X )
1 1 1 0.6134 2.1661
2 1 2 0.5890 2.0853
3 1 3 0.5660 2.0136
4 1 4 0.5443 1.9495
5 1 5 0.5239 1.8921
6 1 6 0.5046 1.8402
7 1 7 0.4863 1.7933

y• = x ′
•
β̂ + ε̂• ⇒ y ∗

•
= ȳ + ε̂• = ȳ + y• − x ′

•
β̂

y•, x
′

•
):(

y = Xβ+ε

β̂
F (β̂)−1

ŷ = E (y |X ) = h(X β̂) µ = h(X β̂):
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Table 3 illustrates the consequences of these 
compensations for some randomly chosen ratings.

Table 3 : Some examples of proper corrections of evaluation ratings.

The arbitrary ratings z• are corrected into the
expected direction and yield the values in the last
column. The ratings of early semesters are lowered, thus 
improved, and ratings of late semesters are raised, thus 
penalized.

e) Semester dummies
Now, we are going to model the impact of the

categorical variable 'semester count' by semester

dummies. This will drop the assumption of a
monotonous influence in favour of more flexibility. We
choose the first semester as the reference category. The 
dummy variables S i, i = 2, . . . , 7, are defined to be 'one',
if the course is affiliated to semester i, and 'zero' 
otherwise. The related GLM reads:

with the (n × 7)–dimensional design matrix

The estimation procedure is the same as
before. Six outliers can be identified in this model,

leaving behind a sample number of n = 134 and the
following vector of estimated coefficients:

Again, the conclusion for the original ratings is
performed by a Taylor series approximation of the
response function. This yields the following expected
evaluation rating values, dependent on the semester 
count:

Evidently, with our data the evaluation ratings
are 'raising' in the beginning and in the last three
semesters. And they are 'falling back' in the middle part
of the study program. But, remember that evaluation
ratings are like 'grades' in our example, meaning that a
'high rating' is equivalent to a 'low grade'.

The residuals of this regression are clearly
normal. The p–value of the skewness–kurtosis test is 
about 45%. The simultaneous significance of the dummy 
variables may be tested by the hypothesis H0 : Cβ = c
with:

The analogous procedure in a GLM yields:

y• = h(x ′
•
β̂) + ε̂• ⇒ y ∗

•
= ȳ + y• − h(x ′

•
β̂)

⇒ z∗
•
= h(y ∗

•
) = h(ȳ + g(z•)− h(x ′

•
β̂))

with ȳ =
1

n
·

n∑

i=1

g(zi)

z• g(z•) x•[2] h(x ′
•
β̂) ȳ y ∗

•
z∗
•

3.7 0.9602 1 0.6088 0.5395 0.8910 3.2521
1.5 0.3670 1 0.6088 0.5395 0.2977 1.3804
2.4 0.7090 2 0.5833 0.5395 0.6652 2.2452
1.4 0.3097 7 0.4768 0.5395 0.3724 1.5099

y = h(Xβ) + ε = h(β0 + β1 · S2 + · · ·+ β6 · S7) + ε

β̂ = (−0.6484, 0.1065, 0.0545, −0.0216,

−0.3271, −0.3130, −0.1657)′

Semester 1 2 3 4 5 6 7
E (zi |X ) 2.0171 2.1669 2.0894 1.9907 1.7126 1.7224 1.8403

X = (1, S2, ... , S7)
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C =




0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




c =




0
0
0
0
0
0




Table 4 demonstrates the way of compensation
for the non-instructional factor 'semester count' for seven

exemplary evaluation ratings. Observed ratings z• have
to be reduced (i.e. improved) in the first four semesters
and else raised (i.e. deteriorated). The corrected rates
are listed in the last column.

Table 4 : Some examples of proper corrections of evaluation ratings with semester dummies.

z• g(z•) x•[2] h(x ′
•
β̂) ȳ y ∗

•
z∗
•

2.7 0.7828 1 0.5703 0.5389 0.7514 2.5659
2.5 0.7351 2 0.6191 0.5389 0.6549 2.2107
2.2 0.6516 3 0.5945 0.5389 0.5960 2.0291
2.1 0.6199 4 0.5611 0.5389 0.5976 2.0339
2.0 0.5858 5 0.4518 0.5389 0.6729 2.2711
1.8 0.5093 6 0.4561 0.5389 0.5921 2.0179
1.5 0.3097 7 0.5051 0.5389 0.4008 1.5640

IV. Conclusions

Evaluation ratings are an important instrument
in quality management of teaching. Several non–
instructional factors may bias the intended evaluation
of the instructor. It is essential to assess the quantitative
influence of those non–instructional factors in order to
compensate the evaluation ratings for these extrinsic
factors and achieve a fair comparison.

It is tempting to perform a linear least–squares
regression of the evaluation ratings on the non-
instructive factors. The estimated model could easily be
used to eliminate the extrinsic impact. But, if the
residuals from this regression are not normally
distributed, the results will not be reliable. Another
method of estimation has to be applied.

At least with our SEI data, the residuals from a
linear least–squares regression on student's age are
skewed and far from beeing normal. But a proper Box–
Cox transformation of the evaluation ratings yields a
normally distributed dependent variable. This, in turn,
enables the maximum likelihood estimation of a GLM.
This procedure is not quite common. Therefore, it is 
explained in detail in this paper.

Once we have estimated a valid model, we can
use it to eliminate the impact of the considered co–
variable. Due to the non–linear GLM approach, this task
requires a Taylor series approximation of the response
function, which can be fairly easily performed. In our
example, the expected evaluation ratings are getting

better with rising semester count. Students seem to get 
more indulgent with growing age.

Finally, we have conducted the GLM regression
of the transformed evaluation ratings on semester
dummy variables. Now we receive more flexible, non–
monotonic impacts of the semester count on
evaluation ratings. Especially with small data sets, this
might be the better approach.

”

”

An important message of this paper should be
to carefully inspect the assumptions of an applied
method. In many cases, these assumptions may not be
met by the data. In these cases a less familiar
procedure may serve as an alternative.
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