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5

Abstract6

Student Evaluations of Instruction (SEI) are an important issue in countries like the USA,7

where the evaluation results can impact professional promotion chances and salary of faculty.8

According to Seldin [11], the percentage of American colleges using SEI grew from 299

10

Index terms— evaluation, extrinsic impacts, generalized linear models, regression, student age11

1 Introduction12

tudent Evaluations of Instruction (SEI) are very widespread and common practice in countries, where the13
evaluation results are applied for professional promotion chances and salary of faculty. In countries like Germany,14
SEI are used as an instrument for the internal quality management and teaching improvement process. This15
instrument is also of growing interest in the accreditation process of study programs and universities.16

The intrinsic impact factors of the evaluation ratings are the single items of the evaluation questionnaire,17
which are answered by the students. But many statistical investigations have shown that there are undesirable18
extrinsic factors, like class size or the quantitative exposition of the course, which are noninstructional by nature19
and, therefore, should be eliminated for a fair comparison of the evaluation ratings. Costin, Greenough and20
Menges [2] presented a review of empirical studies regarding student ratings. They concluded that SEI can21
provide reliable and valid information on the quality of courses and instruction but for further interpretation22
extrinsic factors should be taken into account. Already Heilman and Armentrout [6], Lovell and Haner [8],23
McDaniel and Feldhusen [9] and Hamilton ??5] have shown that teachers of large classes may receive lower24
ratings. Hoefer, Yurkiewicz and Byrne [7] assessed significant differences between undergraduate and SEI. For25
that matter, Brightman [1] states that it is unfair to compare a faculty member teaching a required core class26
with another faculty member teaching a senior-level elective course. Peterson, Berenson, Misa and Radosevich27
[10] have recommended to establish appropriate sets of norming reports in which possible semester factor effects28
are considered.29

It is tempting to perform a linear regression of the evaluation ratings on the non-instructional factors by30
the least-squares principle and to use the estimated model for the compensation procedure. But, this will be31
admissible, if the latent variable is normally distributed. This can be tested by using the residuals from the32
regression as a proxy for the latent variable. Frequently, a dependent variable, like evaluation ratings, is skewed33
to the right. This, in turn, usually prevents the residuals from being normal. At least, this occurs with our data.34

Therefore, our investigation focuses on a proper methodical approach of estimating a non-linear model. After35
a description of the data we shall present the Maximum-Likelihood (ML) estimation of a so-called Generalized36
Linear Model (GLM) step-by-step. The presentation is sufficiently detailed, so that the reader can, for instance,37
apply the procedure to own data with a matrix-based programming software like MATHLAB or GAUSS. We38
restrict our presentation to one non-instructional factor, namely ’ student age’ or, more precisely, the semester39
counter of the evaluated course. The proposed procedure can easily and obviously be extended to more non-40
instructive factors. Eventually, we shall show how to use the estimated model to correct actual and future41
evaluation ratings properly.42
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5 A) GLM ESTIMATION

2 II.43

3 Data44

We have collected n = 140 evaluation ratings z i from seven-semester Bachelor programs from the Business Unit45
of a German University of Applied Sciences together with the semester counter (one to seven), to which the46
evaluated course regularly belongs. The evaluation ratings are means from a five-point Likert S scale, where47
the choice ’one’ is best and ’five’ is worst. Unfortunately, the evaluation ratings are not normally distributed.48
More precisely, the standardized measure of skewness is 1.05 and the standardized measure of kurtosis is 4.51,49
indicating that the dependent variable is skewed to the right with a kurtosis much larger than that of the normal50
distribution. This results in non-normal residuals from a linear least-squares regression. And this prevents51
inferential conclusions of such a regression, like t-values and p-values. The usual methodology is no longer valid52
in this case.53

Luckily, a Box Cox transformation of the evaluation ratings z i can convert the ratings in (approximately)54
normally distributed values y i :55

4 III. Methodology and Exemplary Results56

5 a) GLM estimation57

The most general form of a regression model explains a variable by the sum of its (conditional) expected value58
and of some noise: X denotes the design matrix. In our example, it consists of a first column of ones, representing59
the constant, and a second column with the semester counts. Further columns may be appended for additional60
non-instructional factors. The latent variables ? i are independent and identically (iid) distributed, representing61
the noise.62

In a GLM, the dependent variable must belong to the exponential family and its expected value, given the63
design matrix X, may be a non-linear function h of the linear predictor X?:64

In our example, the column vector ? consists of two unknown parameters, ? 0 and ? 1 , and h is the inverse65
of the link function g and is called ’ response function’.66

The following ML estimation procedure is explained in more detail in Fahrmeir, Kneib, and Lang [4]. Let x i67
be the i-th row of the design matrix X. Then we need the following symbols:68

Consequently, the following diagonal matrices depend on ?:69
The goal is to receive a solution of the nonlinear equation system s(?) = 0, where s(?) is the functional vector70

of partial derivatives of the loglikelihood function:71
Now, the ML estimator may be iteratively approximated by the following equations:y i := g (z i ) := z ? i ?72

1 ? ? N(µ, ? 2 )73
.y i = E (y i |X ) + ? i , ? i ? N(0, ? 2 ) ? i := x ? i ?, µ i := h(? i ), d i := dh(? i ) d? i , w i := d 2 i ? 2 y74

:= (y 1 , ... , y n ) ? , µ := (µ 1 , ... , µ n ) ? D := diag(d 1 , ... , d n ), W := diag(w 1 , ... , w n ) s(?) = ?l(?|y75
, X ) ?? = X ? D(y ? µ)/? 2 ?(k+1) = (X ? W (k) X ) ?1 X ? W (k) ? (k) with ? (k) := X ?(k) + D ?1 ? (y ?76
h(X ?(k) )) µ = E (y i |X ) = h(X ?)77

The value of ?, which minimizes the absolute ske wness of the transformed variables can be calculated78
numerically and is about 0.45 for our data. If we apply the rounded value 0.5, then we receive a standardized79
measure of kurtosis of about 2.85. The hypothesis of normality for the transformed variables y i cannot be80
rejected by any test. D’Agostino, Belanger, and D’Agostino Jr. [3] yields a pvalue above 90%. The transforming81
function g is called ’link function’.82

The normal distribution belongs to the so-called ’exponent ial family’. This admits the estimation of a GLM,83
which will be specified in the next section. measure of skew-ness of about 0.03 and a standardized84

The skew-ness-kurtosis test of85
We have started the iterations with the leastsquares estimator86
In order to estimate ? 2 , which depends on , we first have to eliminate duplicate rows in X. We denote the87

reduced design matrix by . Note, that in our example it has just seven rows due to the seven semester counts.88
The y i have to be averaged to within the seven groups of identical rows of X. Let n j denote the number of89
observations in group j. Then, the variance can be estimated in each step of the iteration:90

Here, p is the number of columns of X, in our example: p = 2.91
Table ?? shows the five iterations, which are needed for convergence in our example.92
Table ?? : Iterations of the Fisher-Scoring algorithm Therefore, we receive the following estimated model:93
The residuals from this model are clearly normal. Thus, they can be ’ studentized’ in order to eliminate94

outliers. In a first step, the residuals ? ?i have to be ’ standardized’:95
In a second step, the standardized residuals will be transformed into a Student distribution:96
We choose to define an outlier as an observation with an absolute studentized residual above the percentage97

point of order 0.975. This yields a 5% probability of an error of first kind. In our example we have excluded ten98
observations leading to n = 130 observations, to which the whole procedure is applied again. This final estimation99
yields:100
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6 b) Model diagnostics101

For model diagnostics, we can test the hypothesis H 0 : C? = c by the asymptotically distributed Wald statistic:102
where r is the rank of C and X ? WX is the Fisher information matrix. In our example, the Wald statistic for103

H 0 : = 0 amounts to 34.32 with a p-value of almost ?2 ( ?(k+1) ) = 1 7 ? p ? 7 j=1 n j ? ?j ? h x ? j ?(k+1)104
2 k ?(k) 0 ?(k) 1 s( ?(k) 0 ) s( ?(k) 1 )1r * i := r i ? n ? p ? 1 n ? p ? r 2 i ? t n?p?1 ? = h(X ?) with ? =105
(?0.5078, ?0.0555) ? w = (C ? ? c) ? (CF ( ?) ?1 C ? ) ?1 (C ? ? c) ? ? 2 r106

zero. And the Wald statistic for H 0 : = 0 amounts to 6.79 with a p-value of 0.0091. Thus, both coefficients107
are highly significant.r i := ?i ? ? ? 1 ? h ii with h ii = x ? i (X ? X ) ?1 x i ? = h(X ?) with ? = (?0.5012,108
?0.0524) ? ?(0) = (X ? X ) ?1 X ? y . X ? y j , j = 1, ... 7, ? 2 r - F ( ?) = ? 1 ? 0 Year 2015109

The ML estimator is (approximately) normally distibuted with covariance matrix . Then , the transformed110
variable y may be estimated or predicted like this: c) Back transformation Eventually, we have to come back to111
the original evaluation ratings z i . To this end, we apply a Taylor series approximation of the response function112
h, centered at113

The Taylor series approximation of the response function enables the conclusion for the evaluation ratings:114
Because the expectation values of odd powers in the Taylor series are zero, the approximation error (with some115

? ? [0, 1]) is limited to: This may be imagined to be negligible.116
Table ?? shows the estimated evaluation ratings in the last column for each group of identical covariables:117

7 Table 2 : GLM-estimated evaluation ratings118

It is clearly seen that the expected ratings in the last column are falling, and therefore getting better, with raising119
semester count in the third column. Thus, advanced students tend to be more patient with instructors.120

8 d) Compensation121

In the simple linear model , the elimination of the impact of the ’extrinsic’ factors in X is realized by the correction122
of the mean value of the dependent variable by the individual residual ? ? of an actual or future observation h(y123
) = (1 ? y /2) ?2 ? h(y ) := (1 ? µ/2) ?2 + (1 ? µ/2) ?3 (y ? µ)+ 3 4 ? (1 ? µ/2) ?4 (y ? µ) 2 ? = E (z|X ) =124
E (h(y )|X ) ? E ( h(y )|X ) = (1 ? µ/2) ?2 + 3 4 ? (1 ? µ/2) ?4 ? V (y |X ) = (1 ? h(X ?)/2) ?2 + 3 4 ? (1 ?125
h(X ?)/2) ?4 ? ?2 ( ?) h ???? (?y + (1 ? ?)µ) 4! ? (y ? µ) 4 < 0.0004 i X i,1 X i,2 ?i E (z i |X ) 1 1 1 0.6134126
2.y ? = x ? ? ? + ?? ? y * ? = ? + ?? = ? + y ? ? x ? ? ? y ? , x ? ? ): ( y = X ? + ? ? F ( ?) ?1 ? = E (y127
|X ) = h(X ?) µ = h(X ?):128

Table ?? illustrates the consequences of these compensations for some randomly chosen ratings.129
Table ?? : Some examples of proper corrections of evaluation ratings.130
The arbitrary ratings z ? are corrected into the expected direction and yield the values in the last column. The131

ratings of early semesters are lowered, thus improved, and ratings of late semesters are raised, thus penalized.132

9 e) Semester dummies133

Now, we are going to model the impact of the categorical variable ’ semester count’ by semester dummies. This134
will drop the assumption of a monotonous influence in favour of more flexibility. We choose the first semester as135
the reference category. The dummy variables S i , i = 2, . . . , 7, are defined to be ’one’, if the course is affiliated136
to semester i, and ’zero’ otherwise. The related GLM reads: with the (n × 7)-dimensional design matrix137

The estimation procedure is the same as before. Six outliers can be identified in this model, leaving behind138
a sample number of n = 134 and the following vector of estimated coefficients: Again, the conclusion for the139
original ratings is performed by a Taylor series approximation of the response function. This yields the following140
expected evaluation rating values, dependent on the semester count:141

Evidently, with our data the evaluation ratings are ’ raising’ in the beginning and in the last three semesters.142
And they are ’falling back’ in the middle part of the study program. But, remember that evaluation ratings are143
like ’grades’ in our example, meaning that a ’high rating’ is equivalent to a ’low grade’.144

The residuals of this regression are clearly normal. The p-value of the skewness-kurtosis test is about 45%.145
The simultaneous significance of the dummy variables may be tested by the hypothesis H 0 : C? = c with:146

The analogous procedure in a GLM yields: Year 2015y ? = h(x ? ? ?) + ?? ? y * ? = ? + y ? ? h(x ? ? ?)147
? z * ? = h(y * ? ) = h(? + g (z ? ) ? h(x ? ? ?)) with ? = 1 n ? n i=1 g (z i ) z ? g (z ? ) x ? [2] h(x ? ? ?)148
? y * ? z * ? 3.7 0C = ? ? ? ? ? ? ? ?149

0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1? ? ? ? ? ? ? ? c = ? ? ? ? ?150
? ? ? 0 0 0 0 0 0 ? ? ? ? ? ? ? ?151

Table ?? demonstrates the way of compensation for the non-instructional factor ’ semester count’ for seven152
exemplary evaluation ratings. Observed ratings z ? have to be reduced (i.e. improved) in the first four semesters153
and else raised (i.e. deteriorated). The corrected rates are listed in the last column.154

Table ?? : Some examples of proper corrections of evaluation ratings with semester dummies. z ? g (z ? ) x155
? [2] h(x ? ? ?) ? y * ? z * ? 2.7 0156
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10 Conclusions157

Evaluation ratings are an important instrument in quality management of teaching. Several noninstructional158
factors may bias the intended evaluation of the instructor. It is essential to assess the quantitative influence159
of those non-instructional factors in order to compensate the evaluation ratings for these extrinsic factors and160
achieve a fair comparison.161

It is tempting to perform a linear least-squares regression of the evaluation ratings on the noninstructive162
factors. The estimated model could easily be used to eliminate the extrinsic impact. But, if the residuals from163
this regression are not normally distributed, the results will not be reliable. Another method of estimation has164
to be applied.165

At least with our SEI data, the residuals from a linear least-squares regression on student’ s age are skewed166
and far from beeing normal. But a proper Box-Cox transformation of the evaluation ratings yields a normally167
distributed dependent variable. This, in turn, enables the maximum likelihood estimation of a GLM. This168
procedure is not quite common. Therefore, it is explained in detail in this paper.169

Once we have estimated a valid model, we can use it to eliminate the impact of the considered covariable.170
Due to the non-linear GLM approach, this task requires a Taylor series approximation of the response function,171
which can be fairly easily performed. In our example, the expected evaluation ratings are getting better with172
rising semester count. Students seem to get more indulgent with growing age.173

Finally, we have conducted the GLM regression of the transformed evaluation ratings on semester dummy174
variables. Now we receive more flexible, nonmonotonic impacts of the semester count on evaluation ratings.175
Especially with small data sets, this might be the better approach.176

11 ” ”177

An important message of this paper should be to carefully inspect the assumptions of an applied method. In178
many cases, these assumptions may not be met by the data. In these cases a less familiar procedure may serve179
as an alternative.

Figure 1:
180
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