Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals. However, this technology is currently in beta. *Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.*

1	Target Costing and Performance of Manufacturing Industry in
2	South-Western Nigeria
3	Lawrence Imeok paria 1 and Imeok paria Lawrence 2
4	¹ Redeemers University
5	Received: 7 December 2013 Accepted: 2 January 2014 Published: 15 January 2014

7 Abstract

8 This research work seeks to explore the extent of Target Costing system adoption and

⁹ implementation by manufacturing industry in South-Western Nigeria and the impact on their

¹⁰ performance. In the research work, performance was defined in terms of profitability, Return

¹¹ on Capital Employed and reduction in the cost of production. The study adopted the survey

¹² research method, using structured questionnaire to collect data from the sample data group

¹³ which represents all manufacturing firms in South Western Nigeria listed on the Nigerian

¹⁴ Stock Exchange as at 31st December 2013. A total of 282 firms were included in the study.

¹⁵ Reliability test with Cronbach?s Alpha of 0.88 was obtained using the ordinary least square

and t-test methods. The results showed that the level of adoption and application of target
 costing by manufacturing industry in South Western Nigeria is low. However, the findings also

¹⁷ costing by manufacturing industry in South Western Nigeria is low. However, the findings also ¹⁸ showed that there is a strong positive relationship between adoption of Target costing and of

- ¹⁹ improvement in Return on Investment and reduction of cost.
- 20

21 Index terms— target costing, competition, performance and profitability

22 1 Introduction

he changes in the business environment in Nigeria occasioned by merger, acquisition and consolidation of many 23 businesses within the manufacturing industry have brought about changes in the scope and size of many firms. 24 Most large manufacturing firms in Nigeria benefit from economies of scale and therefore are able to charge lower 25 prices. However, according to Ellram (2000), Lockamy & Smith (2000), and Shank & Fisher (1999), target costing 26 may serve as a solution when developing new products, minimizing costs through optimal use of all resources 27 along with entire supply chain. Ahmed, Cullen & Dunlop (1997) argue that the aim of target costing is to look 28 at all possible ideas of cost reduction when designing a new product. In the same vein, Pierce (2002) states 29 that the target costing process require a comprehensive information system and cross functional involvement. 30 implementation of target costing by manufacturing industries in South-Western Nigeria. Therefore, the study 31 will also determine the impact of target costing on the overall performance of the manufacturing industry in 32 South-Western Nigeria in terms of Return on Capital Employed, Profitability and cost reduction. 33

34 **2** III.

35 **3** Development of The Hypothesis

The following hypotheses will be tested: Hypothesis 1: Target costing systems have not been significantly adopted by manufacturing companies in South Western Nigeria.

³⁸ 4 Hypothesis 2:

³⁹ There is no significant relationship between the adoption and application of target costing and cost reductions

40 by manufacturing companies in South-Western Nigeria.

$_{41}$ 5 Hypothesis 3:

42 There is no significant association between the extent of the adoption of target costing and improvement of 43 financial performance by manufacturing companies in South-Western Nigeria.

44 IV.

45 6 Review of Literature

This paper adds to the literature on what target costing is-theoretical definitions offer diverging views as to whether it is a tool, or somewhat a process. The eclectic review was also related to the reasons for, the process and the goals of target costing. The concepts of value engineering and management accounting were also given an analogous relation to the concept. Extant literatures were also reviewed.

Target costing is a cost management tool for minimizing the general cost of a product over its product life 50 cycle (Jalaee, 2012). It is basically a product development process that manipulates equations and develops 51 costs based on prices, and then works backward to design the product and then the production process (Fridh 52 53 & Borgernas, 2003). A distinguishing factor between the above definitions is that the former The objective of 54 this research work is primarily to determine the level of the adoption and defines target costing as a tool, while 55 the latter harangued the concept as a process. Hamada & Monden (1991) saw it as a dual process of planning 56 a product that meets the customer's needs which establishes the target cost through the sales price and profit margin and also of achieving target cost by using value engineering and an assessment of such targeted costs 57 with achieved costs; this is done by setting sets the target cost by subtracting the target profit margin from 58 the target price and firm determines the target selling price at which a product can be sold in the marketplace 59 (Kaur, 2014). Costs should be should conducted to a point in which the cost does not surpass the predetermined 60 sales price and the lowest amount possible of expected profit ??Sarokolaei & Rahimipoor, 2013). This research 61 62 defines Target costing as essentially a cost management technique which minimizes cost based on the difference between the selling price and target profit margin of a product in order to be in a better competitive position in 63 the marketplace. The framework is based on the eversporadic and competitive Nigerian business environment; 64 fundamentally, the manufacturing sector. 65

The Nigerian business environment is highly unpredictable, erratic and impulsive; this calls for a rational 66 67 technique to be used by the management accountant. Target costing serves as one of the strategic cost 68 management approaches better suited to brace a company's competitiveness in meeting the erratic nature of today's business and the challenges that follow (Bonzemba & Okano, 1998); it is one of the main tools to 69 assisting manufacturers to be globally competitive (Kumar, 2014); this is because in this pricebased target 70 costing, a firm sets a target cost through comparison of various competitive products ((Helms, Ettkin, Baxter, & 71 Gordon, 2005). Target costing is concerned with simultaneously achieving a target cost alongside the planning, 72 development and detailed design of new products (Tani, 1995). It is for these reasons that the effects of target 73 costing in a competitive business environment cannot be overemphasized, as it combines the basic management 74 accounting techniques with the functioning knowledge of management about the business environment. 75

Mathematically, target cost can be described as Target Price -Target Profit. Target costing starts with the
examination of a target profit (Okano, 2005). Extant literatures, however, starts the process with determination
of a competitive product (eg. ??amada & Monden, 199;Ax, Greeve & Nilsson, 2008). Other contemporaneous
literatures envisage planning as the proper start of the process; Tani (1995) needs mentioning.

Extant literatures have however taken different manners to explicate the process of this costing method. 80 Kaur (2014) opined target costing as consisting two major phases which he called the establishment phase and 81 implementation phases. Jalaee (2012) perceived the process as directed by the marketplace by first setting a 82 selling price, then subtracting target income and finally reaching a cost. Ax et al. (2008) further stated that 83 the target cost is then decomposed in order to assign cost targets internally and to suppliers. The degree of 84 influence over suppliers was seen as one of the major factors affecting the structure of target costing (Fridh & 85 Borgernas, 2003); they were of the view that early involvement of such suppliers may result in reduction of time 86 to the market. 87

There have been diverse goals of target costing highlighted in extant literatures. This literature encapsulates 88 the major objective of target costing as to reduce the cost of production of a product which invariably enhances the 89 profit of such product. Target costing exploits costing information and aims at on the best possible price up front 90 and prevents wasted time on discussions concerning design and re-engineering of the product (Jalaee, 2012). Kaur 91 (2014) saw target costing as a major strategic tool on the face of intense competition in the marketplace. Kumar 92 (2014) also viewed target costing as a strong weapon for competition. The goals aforementioned postulated for 93 this literature also has its relevance in situating the business in the competitive market place; Ax et al. (2012) 94 needs mentioning. 95

⁹⁶ 7 a) Empirical Framework

Fridh & Borgenas (2003) studied the use of target costing on Swedish manufacturing firms. 91 companies answered
out of 250 selected companies through random sampling. Primary data was used consisting of the results from
the survey. The survey was afterwards published on a website which comprised of 277 multiple choice questions,
mostly multiple-choice. The total population of the study consisted of companies with 50 or more employees

in the Swedish manufacturing industry, which resulted in 664 companies. The results after the analysis showed
that 16.5 % of manufacturing firms in Sweden use target costs and such companies using it are larger companies
having a differentiation strategy and which operates in highly competitive environments. This assertion goes in
line with one of the goals listed above (eg. ??x et al, 2012;Kaur, 2014;Kumar, 2014).

In studying the obstacles of applying a target costing system in firms, Sarokolaei & Rahimipoor (2013) used 105 the research survey method, while adopting T-Student technique in regression test and coefficient correlation to 106 study the type of relationship between the variables with correlation coefficient used to identify the toughness of 107 correlation and the identification coefficient to determine the volatility of the dependent variable. The findings 108 indicated the obstacles of adopting target costing to include the impracticability to assign a would not have any 109 tendencies to use target costing until when the country (Tehran) benefits from a monopoly market. It was also 110 affirmed that such companies will use this system only in competitive conditions in which they can continue their 111 survival. 112

The eclectic analysis of Wu, Huang & Brown (2013) investigated the role of strategic management accounting 113 in target costing in real-estate investment industry. The didactic literature review made a proposition that 114 in real-estate investment industry, target costing focuses on market orientation/price dynamics together with 115 cost management while giving an encapsulated view of its goals, and general and business circumstance of its 116 117 implementation. They used the case study method and the interview-based evidences from the research revealed 118 that creating added value to increase prices was combined together with cost management in order to achieve 119 expected profit margins and that the strategy of product price increase in this industry was not only at the level of a whole of construction batch, but also at diverse products caused by the features of products within a batch. 120 It was concluded that value creation for increased product price and cost management to meet the customers' 121 needs in a monopoly competition market might provide ways to support the competitive techniques adopted by 122 companies. 123

124 V.

125 8 Methodology

In this study, the research instrument used is the cross sectional survey and explanatory method. The cross sectional survey is considered because it allows for the collection of quantitative data which can be analysed quantitatively using descriptive and inferential statistics.

The population for this study consists of 958 manufacturing companies listed in the Stock Exchange Fact book 129 130 2011 and registered with Manufacturers' Association of Nigeria as at December 2011 located in South-Western 131 Nigeria. The minimum population size was calculated using Yaro-Yamani Formula. n = N 1 + N (e) 2 Where, n = sample size N = Population of the study e = Tolerable error (5% From the result, TC adoption probability is 132 0.601 which is far greater than 0.05. The decision therefore is to accept Ho. This is the measure of the goodness 133 of fit of the regression estimate. The correlation coefficient, R, ranges from -1 to +1 It tells us if there is a 134 relationship between the two variables in the first place. The father R is from zero, there is more probability 135 that there is a relationship so the closer R is to -1 then there is more proof that the relationship is an inverse 136 one and the closer to 1 implies a positive relationship between the variables. The result shows that the value of 137 R is .319 therefore there is a low insignificant positive impact between organisational factors and the adoption 138 and implementation by manufacturing companies in Ogun and Lagos states, Nigeria. 139

¹⁴⁰ 9 Coefficient of determination (R squared)

R squared is the coefficient of determination. The adjusted r squared is also a coefficient of determination but it is a better value as it accounts for the degree of freedom and as such will be adopted for purpose of interpretation. The R-squared value of .102 shows that there is 10.2% level degree of adoption rate of target costing. The degree of determination is very low while the adjusted R-squared further buttressed the point with a negative value of about 19.8% Hypothesis Two:

There is no significant relationship between the adoption and application of target costing and cost reductions by manufacturing companies in South-Western Nigeria.

The equation above establishes the linear relationship between the estimation commands as generated by spss. The estimation equation states that CR is linearly related to Adoption of target costing. C (??) is the constant that is the value of cost that can be reduced if target costing is not adopted or considered at all. C (2) is the slope, it gives the value of CR when target costing increases. The slope measures the rate of change in CR for a unit change in TC. Allowing for the influence of all other variables affecting CR in a stochastic variable u, the equation becomes $CR = C (1) + C (2)^*TC + u$

Where u represents the random error term or simply the error term. Here u represents all those factors (asides Adoption of target costing) that affect CR (reduction in cost) but are not explicitly introduced in the model, as well as purely random forces. Probability value is the most efficient test of significance. If probability value is greater than 0.05(p>0.05), then it is insignificant. The decision is to reject H1 and not to reject H0. On the other hand if probability value is less than 0.05 (p<0.05), this shows significance. The decision is to reject H0 and not reject H1.

From the result, CR probability is 0.00 which is less than 0.05. The decision therefore is shows a strong 160 evidence of H1. This is the measure of the goodness of fit of the regression estimate. The correlation coefficient, 161 R, ranges from -1 to +1 It tells us if there is a relationship between the two variables in the first place. The 162 father R is from zero, there is more probability that there is a relationship so the closer R is to -1 then there 163 is more proof that the relationship is an inverse one and the closer to 1 implies a positive relationship between 164 the variables. The result shows that the value of R is 0.823 therefore there is a significant positive relationship 165 between the adoption and application of target costing system and reduction in the cost of manufactured products 166 of manufacturing companies in Ogun and Lagos states Nigeria. 167

¹⁶⁸ 10 Coefficient of determination (R squared)

R squared is the coefficient of determination. The adjusted r squared is also a coefficient of determination but it 169 is a better value as it accounts for the degree of freedom and as such will be adopted for purpose of interpretation. 170 The R-squared value of 0.677 shows that there is a 68% level degree of relationship between the activities based 171 costing adoption and reduction in cost of manufacturing company. The degree of determination is high while the 172 Adjusted Rsquared even shows it at the same percentage of about 68%. This means that a variation or change in 173 the dependent variable (TC) in response to a positive change in the independent variable is to the tune of Sixty 174 eight (68%) i.e. 0.675 Hypothesis Three: 175 There is no significant association between the extent of the adoption of target costing and improvement of 176

financial performance by manufacturing companies in South-Western Nigeria. From the result, CR probability is 177 0.00 which is less than 0.05. The decision therefore is shows a strong evidence of H1. This is the measure of the 178 goodness of fit of the regression estimate. The correlation coefficient, R, ranges from -1 to +1 It tells us if there 179 is a relationship between the two variables in the first place. The father R is from zero, there is more probability 180 that there is a relationship so the closer R is to -1 then there is more proof that the relationship is an inverse 181 one and the closer to 1 implies a positive relationship between the variables. The result shows that the value 182 of R is 0.917 therefore there is a significant positive relationship between the adoption and application of target 183 costing system and relative improvement in financial performance of manufactured products of manufacturing 184 companies in the south -western Nigeria. 185

Coefficient of determination (R squared) R squared is the coefficient of determination. The adjusted r squared is also a coefficient of determination but it is a better value as it accounts for the degree of freedom and as such will be adopted for purpose of interpretation. The R-squared value of 0.841 shows that there is a 84% level degree of relationship between the target costing adoption and relative improvement in financial performance of manufacturing company. The degree of determination is high while the Adjusted R-squared even shows it at the same percentage of about 84%. This means that a variation or change in the dependent variable (TC) in response to a positive change in the independent variable is to the tune of Eighty four (84%) i.e. 0.841.

¹⁹³ **11 VII.**

194 **12** Conclusion

The result of hypothesis 1 shows that there is a significant level of adoption of Target costing by manufacturing 195 industry in Lagos and Ogun States; although the level of adoption appears to be less than that of the majority of 196 the country surveyed in the developed countries but comparable to that of Japan and South Africa. The result of 197 Hypothesis 2 shows that the r2 value of 0.677 and p value of 0.000 indicates a positive relationship between the 198 adoption and implementation of target costing systems and the reduction of cost of production by manufacturing 199 200 companies in South Western Nigeria. The result of hypothesis 3 shows that there is a significant association 201 between the extent of the adoption of target costing and improvement of financial performance by manufacturing companies in South-Western Nigeria with r2 value of 0.917 and p value 0.000 202

The barrier to the implementation of target costing in this part of the continent is an area which deserves further study.

²⁰⁵ 13 Global Journal of Management and Business Research

206 Volume XIV Issue IV Version I Year () $^{-1}$

 $^{^{1}}$ © 2014 Global Journals Inc. (US)

Figure 1:

 $\mathbf{1}$

).]	Γhe	minimum	sample	size	therefore	is:
------	-----	---------	--------	------	-----------	-----

	n=
	1 + 958(0.05)
	2
VI.	958
	1+2.395
	Test of
	Hypoth-
	esis 958
	3.395
	282.2
	282 com-
	panies
Hypothesis) D
One:	/

Target costing systems have not been

significantly adopted by manufacturing companies in South Western Nigeria. Model Summary Adjusted R S

Total

10.000

b. Predictors: (Constant), Companies responsec. Dependent Variable: Levels of adoption

Figure 2: Table 1 :

$\mathbf{4}$

Model R		R Square		Adjusted R Square		Std. Error of the Estimate		
.823a		.677		.675		.77743		
a. Predictors:	(Con-							
stant), TC	× ·							
			Table 5 : ANOVA	b				
Model		R	Sum of Squares		Df	Mean Square F	Sig.	
Regression			328.688	1		328.688	543.824.000a	
Residual			157.144	260		.604		
Total			485.832	261				

Figure 3: Table 4 :

	TC	COST REDUCTION			
TC	Pearson Correlation			1	.823**
	Sig. (2-tailed)			.000	
	Ν	262	262		
COST REDUCTION		Pearson Correlation			.823** 1
	Sig. $(2 - tailed)$.000		
	Ν	262	262		

[Note: **. Correlation is significant at the 0.01 level (2-tailed).]

Figure 4: Table 7 :

8

Model R	R Squar	e	Adju	sted R Square	Std.
					Error of
					the Es-
					timate
.917a	.841			.841	.76240
a. Predictors: (Constant), TC					
		Table 9 :	ANO	VAb	
Model	Sum of Squares	;	Df	Mean Square	F
Regression	801.592		1	801.592	1379.079
Residual	151.125	260		.581	
Total	952.718	261			
a. Predictors: (Constant), TC				b. Dependent Var	riable: Financial Performa
		Table 10	: Coe	fficientsa	
Model Unstandardized Coefficie	ents			Standardized Coe	efficients
В	Std. Error	Beta			
(Constant)	-1.163			.083	-13.933
ТС	.971 .026			.917	37.136
a. Dependent Variable: Financ	ial Performance				

Figure 5: Table 8 :

 $\mathbf{7}$

11

			ТС	Financial Pe	erformance			
		TC	Pearson Correlation			1	.917**	
			Sig. (2 -tailed)			.00	0	
			Ν	262	262			
		Financial Performance		Pearson Cor	relation		.917**	
							1	
			Sig. (2 -tailed)		.000			
			Ν	262	262			
IFP	=	F(TC) + u			SE	=	.083	.026
IFP	=	C(1) + C(2)*TC + u			T-Statistics :		(13.933)	37.136
IFP	=	(1.163) + .971TC + u			Prob(T-Statia	stics): .000	.000
$\mathbf{R} = 0$	0.917	R-Square $(R2) =$	Adjusted R-Square (H	R2) = 0.841				
		0.841						

Figure 6: Table 11 :

- 207 [African Journal of Business Management], African Journal of Business Management 7 (8) p. .
- [Jalaee ()] 'Advantages of Target Costing in Organization'. H Jalaee . International Journal of Research in
 Management 2012. 2 (1) p. .
- [Kumar ()] 'Association of Quality function deployment and target costing for competitive market'. A Kumar .
 GE -International Journal of Management Research 2014. 2 (2) p. .
- [Shank and Fisher ()] 'Case Study: Target costing as a strategic tool'. J K Shank , J Fisher . Sloan Management
 Review 1999. 4 (1) p. .
- [Tani ()] 'Interactive control in target cost management'. T Tani . Management Accounting Research 1995. 6 p. .
- [Okano ()] Japanese Management Accounting and Recent Changes of target costing at Toyota, H Okano . 2005.
 Osaka. Osaka City University
- [Helms et al. ()] 'Managerial Implications of Target Costing'. M M Helms , L P Ettkin , J T Baxter , M W
 Gordon . Competitiveness Review 2005. 15 (1) p. .
- [Kaur ()] 'Poising between price and quality using target costing'. M Kaur . GE -International Journal of
 Management Research 2014. 2 (1) p. .
- [Ellram ()] 'Purchasing and supply management's participation in the target costingprocess'. L M Ellram .
 Journal of Supply chain management 2000. 36 (2) p. .
- [Sarokolaei and Rahimi Poor ()] 'Studying the obstacles of applying a target costing system in firms accepted in
 Tehran Stock Exchange'. A M Sarokolaei , A Rahimi Poor . Journal of Economics and International Finance
 2013. 5 (1) p. .
- [Pierce ()] 'Target cost management: Comprehensive benchmarking for a competitive market'. B Pierce .
 Accountancy Ireland 2002. 34 (2) p. .
- [Hamada and Monden ()] 'Target costing and Kaizen costing in Japanese Automobile companies'. K Hamada ,
 Y Monden . JMAR 1991. 3 p. .
- [Wu et al. ()] Target costing as a role of strategic management accounting in real-estate investment industry,
 C.-L Wu , P.-H Huang , D Brown . 2013.
- [Lockamy and Smith ()] Target costing for supply chain management: Criteria and selection. Industrial
 Management & Data Systems, A & Lockamy, Smith. 2000. 100 p.
- [Ahmed et al. ()] 'The consequences of inter-firm supply chains for management accounting'. A Ahmed , T Berry
 J V Cullen , A Dunlop . *Management Accounting* 1997. 75 (10) p. .
- [Bonzemba and Okano ()] The Effects of Target Costing Implementation on an organizational culture in France,
 E L Bonzemba , H Okano . 1998. Osaka. Osaka City University
- 238 [Ax et al. ()] 'The Impact of Competition and Uncertainty on the Adoption of Target Costing'. C Ax , J Greeve
- , U Nilsson . International Journal of Production Economics 2008. 115 (1) p. .
- [Fridh and Borgernas ()] The use of target costing in Swedish manufacturing firms, G Fridh , H Borgernas . 2003.
 Goteborg University: School of Economics and commercial law