

1 An Alternative Investigation of Weak Form Efficiency in Dhaka
2 Stock Exchange based on Technical Analysis

3 Md. Mahbubul Haque Khan¹ and Umma Rumana Huq²

4 1

5 *Received: 8 December 2013 Accepted: 4 January 2014 Published: 15 January 2014*

6

7 **Abstract**

8 One highly documented method to test a capital market for weak form efficiency is to identify
9 the return predictability of technical trading rules in that market. Studies on these tests are
10 fewer in number in emerging markets than that of in developed markets and most of the tests
11 have drawn conclusion by including only trend indicators in their trading rules. But it has
12 already been recognized in some previous developed markets studies that trend indicators
13 generally fail to identify sufficient information content in the past prices; hence practitioners
14 very often use these trend indicators combined with confirming indicator (Loh 2007). The
15 current study has investigated Dhaka Stock Exchange, an emerging market of South Asia, for
16 weak form market efficiency by approaching the tests of technical trading rules and has
17 confirmed the profitability of these rules up to 2.15 percent costs per transaction. Here it has
18 used stochastic oscillator as a confirming indicator combined with moving averages (trend
19 indicators) which is the first study of its kind in this market, and has found that it can
20 improve the return predictability only for the short length moving averages.

21

22 **Index terms**— dhaka stock exchange, tests of technical trading rules, market efficiency, moving averages
23 combined with stochastic oscillator.

24 **1 Introduction**

25 In Efficient Market Hypothesis (EMH) it is assumed that the current market price of a security reflects all the
26 information of the respective security and investors by using the information content in the historical price cannot
27 be able to predict current or future price to make abnormal return even if the market is efficient at its weak
28 form (Fama 1970). So the tests of Weak Form Market Efficiency basically try to find out whether there is
29 any relationship between the past prices and the current price, in other word whether the current price can be
30 predicted by using the past prices of a security. By being one of the central areas of research interest during the
31 last couple of decades, this area has showed its development in many phases.

32 The first formal test of market efficiency could be found when Kendall (1953) applied serial correlation
33 coefficient test on weekly changes of nineteen indices of UK industrial stock prices and found near zero correlation
34 coefficient, which supported the market to be complied with random walk model. After that so many studies
35 have been conducted on some other developed markets. If we take a look at the literature up to the year 1970,
36 most of the studies were found to be consistent with market efficiency (Kendall 1953;Fama 1965;Fama & Blume
37 1966;James 1968;Jensen & Benington 1970; ??tc.), though subsequently several studies came up with a totally
38 opposite finding (Lo & MacKinlay 1988;Sweeney 1988;Brock et al. 1992; ??tc.). But to be more precise developed
39 markets are found to be weak form efficient in so many studies (Kendall 1953;Fama 1965 Many studies have also
40 been documented on emerging stock markets. But those are mainly based on statistical tests of independence
41 like: serial correlation coefficient tests, runs tests, tests of normality, variance ratio test and stationarity test,
42 etc. The evidence from emerging markets can be presented by dividing these markets into four areas. Firstly
43 if we look at the Asian markets then we see Poshakwale (1996), Kumar & Dhankar (2011) and Gupta & Yang

5 III. RESEARCH QUESTIONS AND OBJECTIVES

44 (2011) did their studies on Indian Stock Markets and concluded the market to be inefficient. In some other
45 studies Moustafa (2004) As the review from literature shows mixed result, the efficiency of these markets has
46 remained always inconclusive. At the same time, chronological development of testing methods in this field like
47 using time series regression models (Fama & French 1988;Poterba & Summers 1988), applying variance ratio test
48 (Lo & Mackinlay 1988) The next few chapters of this paper will include some reviews from the relevant literature
49 and justification of this study, the research questions which it will address and the objectives of the research,
50 data sources and detailed research methodology, findings of this research, and in the final section it will make
51 concluding remark along with some recommendations.

52 and

53 2 II.

54 3 Literature Review

55 In order to test Weak Form Market Efficiency some of the researchers approached through statistical tests of
56 independence like Serial Correlation Coefficient test (Kendall 1953;Fama 1965), runs test (Fama 1965) and some
57 other approached through test of technical trading rules like filter rule (Alexander 1961 Practically capital market
58 is not frictionless; hence the profitability of trading rules can be challenged with the existence of transaction
59 costs. Fama & Blume (1966) confirmed that Alexander's results overstated the profit and x% filter rule would
60 not outperform buy and hold policy considering the higher transaction costs. ??an Horne & Parker (1967) also
61 concluded the NYSE to be consistent with random walk hypothesis after examining it with moving average
62 technical trading rules. Sweeny (1988) came up with a different conclusion from that of Fama & Blume (1966)
63 on DJIA. He used some new filter rules and found the trading rules were more useful than Fama & Blume did.
64 He added that floor traders can be able to obtain data at a lower transaction cost. James (1968) applied monthly
65 moving averages trading rule on the listed common stocks of NYSE. His results were consistent with random walk
66 hypothesis as he found buy and hold policy was better off in most of the cases. Jensen & Benington (1970) has
67 conducted relative strength trading rule on twenty nine independent samples of two hundred securities of NYSE
68 and confirmed that the market was efficient as the trading rule could not earn more than buy and hold policy
69 after netting the transaction costs. Brock, Lakonishok & LeBaron (1992) used two technical trading rulesmoving
70 average and trading range break on DJIA and found the evidence of profitability of trading strategies. The study
71 of Brock et al. (1992) was replicated on UK market by Hudson, Dempsey & Keasey (1996) and they came up
72 with the finding that technical trading rules cannot generate excess return if cost of transaction is considered.
73 But they confirmed that technical trading rule may exhibit some predictability.

74 So far most of the trading rules like moving averages used in academic research are basically trend indicators
75 which practitioners do not use in predicting the stock price in isolation, as they think these would be too naive
76 to capture the information content in the past prices. Loh (2007) applied a test of technical trading rule based
77 on practitioner's approach on five developed Asian-Pacific stock markets: Australia (ASX), Hong Kong (HKSE),
78 Japan (NIKKEI), South Korea (KOSPI) and Singapore (STI), for the time period 1990 to 1995. His test basically
79 denoted as combined test of trend indicator (moving average) and confirming indicator (stochastic oscillator).
80 He got two interesting results from his analysis-a combined strategy is more effective compared with a simple
81 moving average technique, and weak form efficiency is not determined by technological progress but factors.

82 In fact there are a very few studies on test of technical trading rules in Dhaka Stock Exchange and was none
83 before Kader & Rahman (2005) tested K% filter rule in Dhaka Stock Exchange and concluded it as weak form
84 inefficient. After that Hussain, Chakraborty & Kabir (2008) have tested Moving Average 50, 100, and 200 rules
85 over a big data set from 1986 to 2008 with 5815 observations. They found all the MA rules could outperform
86 buy and hold strategy even considering 0.5% transaction cost for both buy and sell.

87 Most of the previous studies fail to address the practitioner's viewpoint. As the practitioners very often do
88 not use the trend indicator solely rather they adopt some confirming indicator combined with the trend

89 4 Global Journal of Management and Business Research

90 Volume XIV Issue VI Version I Year ()C

91 indicator to create more accurate and sophisticated technical trading rules, the tests which have included
92 only the simple trading rules may not be able to capture the complete information content in the past prices.
93 Considering this fact Loh (2007) adopted moving averages combined with stochastic oscillator in his study and
94 contributed some new findings. In addition to the methodology of Loh (2007) this study has included longer
95 length moving averages to make better comparison among the trading rules. This is the first time applied test of
96 its kind in this country market. It has compared the findings between the traditional approach (simple moving
97 averages) and the practitioners' approach as well as showed the profitability of these rules over buy and hold
98 strategy even after considering the transaction costs.

99 5 III. Research Questions and Objectives

100 This study is going to address the following research questions: IV.?

101 6 Research Methodology and Data Sources

102 Fama (1991) suggested that the test of weak form market efficiency basically denotes to the test of return
103 predictability, which means to find out whether the past return series can predict the future return series. Fama
104 (1965a) described two approaches for test of return predictability for the researchers. The first approach is to use
105 some statistical tools like Serial Correlation Coefficient test, Runs test, etc. to find out whether the past return
106 series is random and statistically independent, so that the chartist or technical analyst cannot be able to predict
107 the prices to earn more return than that of a buy and hold strategy. The second approach is to formulate some
108 suitable technical trading rules and use these directly on the recent market prices to predict the market trend
109 and to find out whether these trading rules are profitable or not. If the trading rules are profitable and can earn
110 more return than that of a buy and hold strategy then it can be concluded that return is predictable and the
111 market is weak form inefficient. ??eilly & Brown (2004, p. 180) has named these two test approaches as firstly,
112 Statistical Tests of Independence, and secondly, Tests of Trading Rules. In order to conduct the Test of Trading
113 Rules, mainly the methodology of Loh (2007) has been followed here. Though Loh (2007) This study is going to
114 test the first three trading rules. A brief description of these rules and signaling process is provided here.

115 7 Moving Average Trading Rule

116 Moving Averages are very famous but simple and easy to use trading rules. Moving Average Trading Rule
117 basically works with buy and sell signals received from the movement of a short run moving average (SRMA)
118 and a long run moving average (LRMA). The formula for calculating a moving average is given below:

119 Here, MA_t is the moving average for the time period t , L denotes to the length of moving average. P is the
120 stock or index price. The value of L in an SRMA t ranges from one to five days. On the other hand the length
121 of moving average L in an LRMA t depends upon the investors' preferences as the investors may like to track
122 run, intermediate or long run trends in the stock prices. Generally L is observed to be 200 days in a long run
123 moving average. If the value of L in SRMA t is one then the moving average is known as Single Moving Average,
124 because, then the price series directly can be After generating a buy (sell) signal the position will be continued
125 before another sell (buy) signal is generated by the moving average process discussed above. Hence the holding
126 period (days) in buy position will be (D_b): $SRMA_t > LRMA_t$, and in the same way the holding period (days)
127 in sell position will be (D_s): $SRMA_t < LRMA_t$.

128 8 Moving Average combined with Stochastic Oscillator

129 Most of the studies on Tests of Moving Averages as a trading rule have included only these single or double moving
130 averages, but from the practitioner's view point depending only on the trend indicator might be misleading. Hence
131 an inclusion of another confirming indicator named 'Stochastic Oscillator' along with the moving averages would
132 be more meaningful. So this study is also going to test the combined signal of moving average and stochastic
133 oscillator. The construction method of a stochastic oscillator is described below: $DL_t = P_t - \min(P_t, P_{t-1},$
134 $\dots, P_{t-m+1})$ $HL_t = \max(P_t, P_{t-1}, \dots, P_{t-m+1}) - \min(P_t, P_{t-1}, \dots, P_{t-m+1})$ $K_t = (DL_t / HL_t)$
135 $) \times 100$

136 Here, DL_t denotes to the difference between the current closing price and the recent lowest price over a
137 predefined period, m . Generally m is assumed as 14 by the practitioners, but this study has considered m equals
138 to L in the LRMA t (Loh 2007). In the same way HL_t is the difference between the recent highest closing
139 price and lowest closing price. K_t is the ratio of latest price range to recent price range. In order to generate
140 a confirming signal K_t is compared with another signal line named D_t , which is calculated in the following
141 way: So from the formula above it is quite clear that D_t is an n -period moving average of K_t . 'n' is commonly
142 assumed as 3 by the practitioners. But in this study n equals to L in the SRMA t is assumed (Loh 2007). The
143 main intuition behind this strategy is-if the line K_t intersects D_t from below then it is assumed by the traders
144 that the market has moved from an oversold to an overbought position so a buy signal is generated and vice-versa.
145 Finally a trading strategy based on moving average combined with stochastic oscillator will look like the same
146 as below: Buy signal at time period t (BS t): $SRMA_t > LRMA_t$ and $SRMA_{t-1} < LRMA_{t-1}$ and $K_t > D_t$
147 Sell signal at time period t (SS t): $SRMA_t < LRMA_t$ and $SRMA_{t-1} > LRMA_{t-1}$ and $K_t < D_t$ A buy (sell)
148 position will be continued until a sell (buy) signal is generated by both the indicators simultaneously.

149 Besides the profitability, this study will also compute the break even cost (BEC) of the trading strategies.
150 The main idea behind this BEC is that, if the trading cost is below the BEC then the strategy will be profitable
151 despite the existence of cost of trading. The formula for calculating BEC is given below: $BEC_t = (D_b \times M_b$
152 $- D_s \times M_s) / (2 \times (N_b + N_s))$

153 Here, D_b and D_s are the total number of buy and sell days and M_b and M_s are average daily return from
154 buy days and sell days respectively. N_b and N_s denote to the number of buy and sell signal respectively. As
155 each buy (sell) signal is associated with a sell (buy) signal, the total number of buy and sell signals are multiplied
156 by 2.

157 9 Data

158 This study has considered daily price data of two indices of Dhaka Stock Exchange (DGEN and DSE20) from
159 the year 2002 to 2010. Here data after the year 2010 has been ignored intentionally, because, at the end of the

160 year 2010 Bangladesh faced severe capital market turmoil which persisted for a long time and at the beginning
161 of the year 2013 Dhaka Stock Exchange replaced its previous two indices with new ones. In order to calculate
162 the return series the following formula has been used (ignoring the dividends): Return on index at time period t
163 = $\ln(MI_t) - \ln(MI_{t-1})$

164 Here, \ln denotes to natural logarithm, MI_t is the market index price at time period t and MI_{t-1} is the price
165 of index at time period previous of t. The standard t-test (one tailed two sample unequal variances t-test) has
166 been used to find out whether the mean return from trading strategy is significantly higher than the mean return
167 from buy and hold strategy. If the profitability of these trading strategies is confirmed over that of the buy and
168 hold strategy then the weak form efficiency of this market will be questionable.

169 V. combined with Stochastic Oscillator, MASO 5-50, MASO 5-200) will be applied on DGEN and DSE20
170 return series to find out whether these are profitable and can outperform the buy and hold strategy. predicting
171 movement of the stock price than that of the long length moving averages . For MA 1-50 trading rule the accuracy
172 in predicting the immediate upward or downward movement of index price (DGEN) is 100%. But at the same
173 time it should be noted that the number of transaction is also higher for the short length moving averages . So if
174 the trading cost is very high in a market, the short length MA rules may not show that much profitability which
175 is observed from the table ??11. In this study, a confirming indicator which is known as stochastic oscillator is
176 used with Moving Average to improve the predictability and profitability of the moving average trading rules.
177 Here it is found that using stochastic oscillator with moving average improves only the short length moving
178 average (compare MA 5-50 and MASO 5-50), but for the long length moving average (Compare MA 5-200 and
179 MASO 5-200) the result becomes reversed. So the result does not fully support the findings of Loh (2007).

180 **10 Empirical Results**

181 **11 In**

182 Table 5.12 shows all most in all the cases (except for two cases) the holding days are found correct for more
183 than 50% of days. Differences are significantly different from '0' at 5% and 1% level of significance. BUY must
184 be positive and SELL must be negative in order the trading rules to be held successful in predicting the market
185 movements. Besides, using stochastic oscillator as a confirming indicator improves the predicting capacity of MA
186 5-50 rule in both buy and sell cases, which also complies with the findings of Loh (2007). But the same is not
187 true for MA 5-200 rule. Rather the predictive ability has been decreased when we used stochastic oscillator. So
188 it can be inferred that using stochastic oscillator as a confirming indicator may not applicable for improving the
189 performance of longer length moving averages as Loh himself used MA 5-20 and MA 5-60 in his study. Up to
190 this it has not been revealed whether a complete strategy can outperform the buy and hold strategy and Table
191 5.14 will be helpful in this regard. We assume here a complete strategy like holding the index in buy position in
192 buy signal days and holding it in short position in sell signal days rather comparing these as a separate strategy.
193 Average daily return of the whole holding period is calculated. This is the most interesting part of this study
194 as now it becomes quite apparent that only MA 1-50 rule can outperform the buy and hold strategy. Because,
195 though all other trading rules showed greater return than buy and hold strategy (except for only a few exceptions)
196 in Table 5.11, only MA 1-50 (for both DGEN & DSE20) shows statistically significant higher return than that
197 of buy and hold strategy in Table 5.14. This result also complies with the findings of some earlier studies where
198 short length moving averages performed better than the long length moving averages in the markets bearing
199 short trend in price series (Isakov & Hollistein 1999;Lento 2007).

200 **12 VI.**

201 **13 Conclusion**

202 Tests of trading rules conducted in this study reveal the profitability of trading rules set on Dhaka Stock Exchange
203 even after considering transaction costs. It implies that investors of Bangladesh can apply different technical
204 trading strategies to predict the market movement and earn return without bearing appropriate risk. Moreover,
205 by combining the confirming indicator along with the trend indicator the return predictability of short length
206 moving averages can be increased significantly. As the trading rules are found to

207 **14 Global Journal of Management and Business Research**

208 Volume XIV Issue VI Version I Year () C significantly outperform the buy and hold strategy, the market is
209 not following weak form of efficiency. Findings from the previous chapter and also from the previous studies
210 confirm that Dhaka Stock Exchange is suffering from weak form market inefficiency and the information content
211 in the past prices does not reflect in the current market price of securities, which is alarming for the general
212 investors of this market. To address the issues related to weak form market inefficiency, policies should be taken
213 to remove information asymmetry, i.e. improving the disclosure policies, creating awareness among the investors,
214 etc. In order to uphold the general investors' interest the regulatory authority can control the opportunities of
215 making excess return by violating the market structures. Educational and training initiatives should be taken and
216 increased to disseminate basic investment knowledge to the investors so that they can make informed decision.

217 Besides growing number of actively traded securities and quality IPOs can also help to enhance the securities
218 trade flow, which may further help in raising informational efficiency in this market.

219 **15 Global Journal of Management and Business Research**

Volume XIV Issue VI Version I Year () C ^{1 2}

Figure 1:

$$MA_t = \frac{1}{L} \sum_{i=1}^L P_{t-i}$$

Figure 2:

220

¹© 2014 Global Journals Inc. (US) 1
²© 2014 Global Journals Inc. (US)

$$D_t = \frac{1}{n} \sum_{i=1}^n K_{t-n}$$

Figure 3:

Figure 4:

Now the process of generating buy and sell signals from a moving average will be discussed. A buy (sell) signal is generated when SRMA t intersects LRMA t from below (above):

Buy signal at time period t (BS t): SRMA $t >$ LRMA t and SRMA $t-1 <$ LRMA $t-1$

Sell signal at time period t (SS t): SRMA $t <$ LRMA t and Year SRMA $t-1 >$ LRMA $t-1$

Volume XIV Is-
sue VI Version I
()
Global Journal
of Management
and Business
Research

[Note: C used as SRMA t]

Figure 5:

5

Trading Rules	N b	N s	F b %	F s %	Absolute Return %	Absolute Return % * from Buy and Hold Strat- egy %
DGEN						
MA 1-50	48	48	100	100	506	236
MA 1-200	15	15	100	100	319	224
MA 5-50	31	30	70.97	76.67	295	236
MA 5-200	10	10	80	60	243	224
MASO 5-50	28	25	78.57	84	309	236
MASO 5-200	8	7	87.50	85.71	110	224
DSE 20						
MA 1-50	50	50	94	96	437	236
MA 1-200	19	19	94.74	68.42	284	224
MA 5-50	30	29	63.33	68.97	254	236
MA 5-200	8	8	75	75	232	224
MASO 5-50	26	27	73.08	70.37	271	236
MASO 5-200	6	8	83.33	75	196	224

Note:

Figure 6: Table 5 .

5

Trading Rules DGEN MA 1-50 MA 1-200 MA 5-50	D	D	B	S	BUY	=SELL	=B	Year
	b	s	c	c	M	M	s	XIV
142777%	142777%	777%	%	%	b	-M	=M	Is-
12989862.168.82M	12989862.168.82M	9862.168.82M	2M	2M	h	-	b	sue
14677459.241.86	14677459.241.86	77459.241.86	241.86	241.86	0.0027891*	0.0027891*	*	VI
58.282.46.001546**	58.282.46.001546**	2.46.001546**	46**	46**	s			Ver-
(3.8413)63960.00433511*	(3.8413)63960.00433511*	3.8413)63960.00433511*						
0.001045* (8.1858)	0.001045* (8.1858)	0.001045* (8.1858)						
(2.4280)001728002773**	(2.4280)001728002773**	2.4280)001728002773**						
0.000763 (4.8518)	0.000763 (4.8518)	0.000763 (4.8518)						
3.2456)0.002104**	3.2456)0.002104**	3.2456)0.002104**						
								-
								0.00143**
(1.9097) 0.000761 (1.7651) 0.000786* (1.9756) 0.000603 (1.2943) 0.00166** (3.9482) 0.001049* (2.3864) 0.000								

[Note: c]

Figure 7: Table 5 .

5

Trading Rules	Break Even Cost (BEC) %
DGEN	
MA 1-50	2.63
MA 1-200	2.24
MA 5-50	2.42
MA 5-200	2.43
MASO 5-50	2.91
MASO 5-200	3.67
DSE 20	
MA 1-50	2.18
MA 1-200	3.73
MA 5-50	2.15
MA 5-200	7.26
MASO 5-50	2.56
MASO 5-200	7.02

Figure 8: Table 5 .

5

Trading Rules	Mean Return (Trading Rules)	Mean Return (Buy and Hold strategy)	t-statistic
DGEN			
MA 1-50	.00226	.00105	3.425 *
MA 1-200	.00154	.00107	1.230
MA 5-50	.00131	.00105	0.745
MA 5-200	.00117	.00107	0.243
MASO 5-50	.00138	.00105	0.922
MASO 5-200	.00053	.00107	-1.448
DSE 20			
MA 1-50	.00195	.00105	2.540 *
MA 1-200	.00137	.00107	0.784
MA 5-50	.00113	.00105	0.227
MA 5-200	.00112	.00107	0.121
MASO 5-50	.00121	.00105	0.444
MASO 5-200	.00095	.00107	-0.335

{Note: Note:}

Figure 9: Table 5 .

221 [Mobarek and Keasey (2000)] , Asma & Mobarek , Keavin Keasey . 2000. May.

222 [Hudson et al. ()] 'A note on the weak form efficiency of capital market: The application of simple technical
223 trading rules to UK stock prices-1935-1994'. Robert Hudson , Dempsey , Kevin Keasey . *Journal of Banking*
224 & Finance

225 [Loh ()] 'An alternative test for weak form efficiency based on technical analysis'. Elaine Y L Loh . *Applied*
226 *Financial Economics* 2007. 17 p. .

227 [Aly et al. ()] 'An Analysis of Day-of-the-Weak Effects in the Egyptian Stock Market'. Hassan Aly , Mehdian ,
228 & Seyed , Mark J Perry . *International Journal of Business* 2004. 9 (3) p. .

229 [Ntim et al. ()] 'An Empirical Re-Examination of the Weak Form Efficient Markets Hypothesis of the Ghana
230 Stock Market Using Variance-Ratios Tests'. Collins Ntim , Gyakari , Opong , K Kwaku , Jo Danbolt .
231 *African Finance Journal* 2007. 9 (2) .

232 [Khan et al. ()] 'An Empirical Test of Weak Form Market Efficiency on an Emerging Market: Evidence from
233 Dhaka Stock Exchange'. Md Khan , & Haque , Umma Huq , Rumana . *Dhaka University Journal of Business*
234 *Studies* 2013. 34 (2) .

235 [Isakov and Hollistein ()] 'Application of Simple Technical Trading Rules to Swiss Stock Prices: Is it Profitable?
236 Research Paper N2'. Isakov , Marc Hollistein . *International Center for Financial Asset Management and*
237 *Engineering* 1999.

238 [Metghalchi et al. ()] 'Are Moving Average Trading Rules Profitable? Evidence From The Mexican Stock
239 Market'. Massoud Metghalchi , Garza-Gomez , Xavier , Yong & Glasure , Yung-Ho Chang . *The Journal*
240 *of Applied Business Research* 2008. 24 (1) p. .

241 [Akhter et al. ()] 'Capital Markets Efficiency: Evidence from the Emerging Capital Market with Particular
242 Reference to Dhaka Stock Exchange'. Shelina & Akhter , M Misir , Abu . *South Asian Journal of Management*
243 2005. 12 (3) p. .

244 [Khan et al. ()] 'Distribution of Risk and Return: A Statistical Test of Normality on Dhaka Stock Exchange'.
245 Md Khan , & Haque , Umma Huq , Rumana . *Research Journal of Finance and Accounting* 2012. 3 (3) p. .

246 [Kumar and Dhankar ()] 'Distribution of Risk and Return: A Test of Normality in Indian Stock Market'. Rakesh
247 & Kumar , Raj S Dhankar . *South Asian Journal of Management* 2011. 18 (1) p. .

248 [Vaidyanathan et al. ()] 'Efficiency of the Indian Capital Market'. R Vaidyanathan , Kanti Gali , Kumar . *Indian*
249 *Journal of Finance and Research* 1994. 2 p. .

250 [Fama ()] 'Efficient Capital Markets: A Review of Theory and Empirical Work'. Eugene F Fama . *The Journal*
251 *of Finance* 1970. 25 (2) p. .

252 [Fama ()] 'Efficient Capital Markets: II'. Eugene F Fama . *The Journal of Finance* 1991. 46 (5) p. .

253 [Rehman et al. ()] 'Evaluation of Weak Form of Efficiency: An Empirical Study of Emerging South Asian Stock
254 Markets'. Awais Rehman , Ur , Masood , Mubashar , Arshed , & Saleem , Syed Shah , Zulfiqar Ali .
255 *International Research Journal of Finance and Economics* 2012. 88 p. .

256 [Poshakwale ()] 'Evidence on Weak Form Efficiency and Day of the Weak Effect in the Indian Stock Market'.
257 Sunil Poshakwale . *Finance India* 1996. 10 (3) p. .

258 [Fama and Blume ()] 'Filter Rules and Stock Market Trading'. E F Fama , Marshall E Blume . *The Journal of*
259 *Business* 1966. 39 (1) p. .

260 [Hong and Lee ()] 'Inference on via generalized spectrum and nonlinear time series models'. Y Hong , T.-H Lee
261 . *The Review of Economics and Statistics* 2003. 85 p. .

262 [Reilly et al. ()] *Investment Analysis and Portfolio Management*, Frank K Reilly , Brown , C Keith . 2004. USA:
263 Thomson.

264 [Hussain et al. (2008)] 'Is Dhaka Stock Exchange Efficient? An Application of Technical Trading Rule'. Tashfeen
265 Hussain , Chakraborty , & Liton , Mir Kabir , Ahsan . *Paper presented at International Conference on*
266 *Recent Development in Statistical Sciences (ICSS)*, (Dhaka, Bangladesh) 2008. December.

267 [Mobarek et al. ()] 'Market Efficiency in Emerging Stock Market: Evidence from Bangladesh'. Asma Mobarek ,
268 A Mollah , Rafiqul Sabur & Bhuyan . *Journal of Emerging Market Finance* 2008. 7 (1) p. .

269 [Poterba et al. ()] 'Mean Reversion in Stock Prices'. James M Poterba , Summers , H Lawrence . *Journal of*
270 *Financial Economics* 1988. 22 p. .

271 [James and Jr ()] 'Monthly Moving Average-An Effective Investment Tool?'. F E James , Jr . *Journal of Financial*
272 *and Quantitative Analysis* 1968. 3 (3) p. .

273 [Chion et al. ()] 'On the Normality of Stock Return Distributions: Latin American Markets'. Sergio J Chion , C
274 Veliz , N Carlos . *Journal of CENTUM Cathedra* 2008. 2000-2007. 1 (2) p. .

275 [Fama and French ()] 'Permanent and Temporary Components of Stock Prices'. E F Fama , Kenneth R French
276 . *The Journal of Political Economy* 1988. 96 (2) p. .

277 [Alexander ()] 'Price Movements in Speculative Markets-Trends or Random Walks'. Sidney S Alexander .
 278 *Industrial Management Review* 1961. 2 (2) p. .

279 [Alexander ()] 'Price Movements in Speculative Markets-Trends or Random Walks'. Sidney S Alexander .
 280 *Industrial Management Review* 1964. 5 (2) p. .

281 [Jensen and Benington ()] 'Random Walks and Technical Theories: Some Additional Evidence'. Michael C
 282 Jensen , George A Benington . *Journal of Finance* 1970. 25 (2) p. .

283 [Fama ()] 'Random Walks in Stock Market Prices'. E F Fama . *Financial Analyst Journal* 1965a. 21 (5) p. .

284 [Gilmore and Mcmanus (2001)] 'Random-Walk and Efficiency Test of Central European Equity Markets'. Clare
 285 G Gilmore , Ginette M Mcmanus . *European Financial Management Association Conference at 2001*. June.

286 [Brock et al. ()] 'Simple Technical Trading Rules and the Stochastic Properties of Stock Returns'. William Brock
 287 , Josef & Lakonishok , Blake Lebaron . *Journal of Finance* 1992. 47 (5) p. .

288 [Sweeny ()] 'Some New Filter Rule Tests: Methods and Results'. Richard J Sweeny . *The Journal of Financial
 289 and Quantitative Analysis* 1988. 23 (3) p. .

290 [Lo et al. ()] 'Stock Market Prices Do not Follow Random Walks: Evidence from a Simple Specification Test'.
 291 Andrew W Lo , A Mackinlay , Craig . *The Review of Financial Studies* 1988. 1 (1) p. .

292 [Mills ()] 'Technical Analysis and the London Stock Exchange: Testing Trading Rules Using the FT30'. Terence
 293 C Mills . *International Journal of Finance & Economics* 1997. 2 (4) p. .

294 [Hassan et al. ()] 'Testing of Random Walks and Market Efficiency in an Emerging Market: An empirical
 295 Analysis of Karachi Stock Exchange'. Arshad Hassan , Abdullah , Muhammad Shoib , & Shah , Zulfiqar
 296 Ali . *The Business Review* 2007. 9 (1) p. .

297 [Kader et al. ()] 'Testing the Weak-Form Efficiency of an Emerging Market: Evidence from the Dhaka Stock
 298 Exchange References Références Referencias of Bangladesh'. Mir Kader , Afm Abdul & Rahman , Ataur .
 299 *AIUB Journal of Business and Economics* 2005. 4 (2) p. .

300 [Moustafa ()] 'Testing the Weak-Form Efficiency of the United Arab Emirates Stock Market'. M A Moustafa .
 301 *International Journal of Business* 2004. 9 (3) p. .

302 [Gupta and Yang ()] 'Testing Weak form Efficiency in the Indian Capital Market'. Rakesh & Gupta , Junhao
 303 Yang . *International Research Journal of Finance and Economics* 2011. 75 p. .

304 [Lento ()] 'Tests of Technical Trading Rules in the Asian-Pacific Equity Markets: A Bootstrap Approach'. Camillo
 305 Lento . *Academy of Financial and Accounting Studies Journal* 2007. 11 (2) .

306 [Kendall ()] 'The Analysis of Economic Time-Series Part I: Prices'. M G Kendall . *Journal of the Royal Statistical
 307 Society* 1953. 116 (1) p. .

308 [Fama ()] 'The Behavior of Stock Market Prices'. E F Fama . *The Journal of Business* 1965. 38 (1) p. .

309 [Cooray and Wickremasinge ()] 'The Efficiency of Emerging Stock Markets: Empirical Evidence from the South
 310 Asian Region'. Arusha & Cooray , Guneratne Wickremasinge . *The Journal of Developing Areas* 2007. 41 (1)
 311 p. .

312 [Horne and Parker George ()] 'The Random-Walk Theory: An Empirical Test'. Van Horne , James C Parker
 313 George , GC . *Financial Analyst Journal* 1967. 23 p. .

314 [Allen and Karjalainen ()] 'Using genetic algorithms to find technical trading rules'. F Allen , R Karjalainen .
 315 *Journal of Financial Economics* 1999. 51 p. .

316 [Weak-form market efficiency of an emerging Market: Evidence from Dhaka Stock Market of Bangladesh. Paper presented at The
 317 *Weak-form market efficiency of an emerging Market: Evidence from Dhaka Stock Market of Bangladesh.*
 318 *Paper presented at The ENBS Conference*, Oslo, Norway.