

1 Dairy Farmers' Welfare Losses from Farm-To-Retail Milk Price 2 Adjustments: Highlight on Market Integration and Price 3 Transmission

Mazhir Nadeem Ishaq¹

¹ Northeast Agriculture University

Received: 14 December 2015 Accepted: 31 December 2015 Published: 15 January 2016

8 Abstract

9 This study was carried out in four districts of Punjab province of Pakistan with a focus to
10 examine milk market integration, price adjustments and price spreads in short-run and
11 long-run equilibrium for fluid milk. Price transmission describes how a price change at one
12 level of market chain corresponds to another level. Vector Error Correction Model (VECM)
13 was applied to estimate the symmetry of price transmission. Monthly average prices of milk
14 producer and consumer covering the period from 2010 to 2016 were used in the empirical
15 analysis. Seasonality was an important factor in milk production and was kept in account.
16 Stationarity between farm and retail prices was examined through Augmented-Dicky Fuller
17 (ADF) test whereas, the nature of long-term co-integration among price series was estimated
18 by Johansen co-integration test.

Index terms— milk supply chain, price transmission, seasonality, price elasticity, co-integration, dairy prices, error correction model, punjab

22 1 Introduction a) Background of Study

23 volatility of price in agribusiness markets not only affects farm revenue and farmer's ability to maintain their
24 operations but it also validates the market structure and its performance. Price is an essential economic tool
25 which linked the different levels and/or intermediaries of a particular product market, such as dairy enterprise
26 (Serra and Goodwin 2003). The efficiency of agricultural markets depends on a high degree of perfect and fair
27 price mechanism based on efficient integration among various marketing stakeholders. Agriculture development
28 may be achieved if changes in price at one level (e.g. consumer) are efficiently transmitted to next level of Market
29 structure (Producer). In Pakistan, milk producers are deprived from the welfare effects of positive price changes
30 due to inefficient transmission from retailers to dairy farmers. This price disparity resulted in the rural economy
31 with losses and under-development. This market inefficiency dilemma has led to the unfair redistribution of
32 economic resources from agriculture sector to other enterprises.

In Pakistan's agriculture, the dairy farming is an important income generating activity. Milk produce contributes a major share to gross national income (GNI). Milk is very important livestock product which can provide a consistent source of income to smallscale dairy farmers (Shinoj et al. 2008). Livestock farming in agriculture sector is recognized as a potential source of employment generation for rural small, marginal and landless laborers. Livestock supplements human food in form of milk, meat, eggs, and skins along with farmyard manure for agriculture production. According to official stats of Economic survey of Pakistan, the contribution of livestock towards agriculture value addition and in the national GDP is 58.3% and 11.6 % respectively. Livestock's gross value addition represents an increasing trend of 2.7 percent to the corresponding previous period of 2014-15 and overall value had increased from 756.6 billion PKR to 776.5 PKR. The current estimated population milk producing animals (cow, buffaloes, goats, sheep and camel) was around 176.6 million.

1 INTRODUCTION A) BACKGROUND OF STUDY

43 In Pakistan, the total milk production for the year 2015-16 was recorded as 54.328 million tons and is presumed
44 to be 6th in global milk producers. Buffaloes and cows are two major dairy animals which are primarily reared for
45 milk production in Pakistan and their share in total milk production is 61 % and 32.8% respectively (GOP2015,
46 and ??OP 16).

47 The milk marketing system generally engaged various marketing agents which add some kind of utility at
48 each specific marketing node. A marketing node in any marketing chain is referred to as a stage/level where
49 exchange or transformation of a product takes place (Zia 2007). In Pakistan, milk marketing chain is usually
50 composed of five different marketing nodes; milk producers, local milk collectors (Dhodi), processors/dairy plants,
51 wholesalers/distributors, and retailers or milk shops. The overall milk marketing system is broadly segmented into
52 two marketing channels; informal milk marketing channels and formal milk marketing channels. The traditional
53 or informal milk marketing system deals with collection and distribution of raw fresh milk without any legal license
54 issued from a regulatory department. Formal milk marketing system undertakes milk collection, processing and
55 distribution under a lawful mechanism of dairy and food regulatory department to ensure food safety regulations.
56 Milk marketing in Pakistan is dominated by informal sector as it occupies more than 94% share and rest is of
57 milk is marketed by formal milk processing sector. Due to huge investment in reconstruction and new capacity
58 building in formal dairy sector, the scenario is altering with rapid pace. However, the milk producers are free to
59 sell their milk production according to price and services provided by existing available marketing system; either
60 informal or formal channels.

61 Vertical price transmission analysis in milk marketing channels and spatial markets is a subject of considerable
62 attention to examine price relationship among milk producers, wholesalers and final consumers. The price
63 transmission is a complex economic relationship between the producers and the consumers and it explains how a
64 price change at one marketing level react towards the next level in the marketing system of product. The prices
65 of milk producers on farm gate is a sensitive issue as the marketing agents/middlemen often offered low prices
66 as compare to their fair share from retail market prices. The price spread in milk marketing chain of Pakistan
67 is wider as many small scale intermediaries are engaged. Retail prices do not absorb any negative change in
68 prices which can lowers the retailers' profit margin and the price change is immediately shifted to consumer
69 price (Azzam 1999). The market power exercised by processors or retailers tend to increase the difference between
70 producer and consumer prices and resultantly reduce producer's share in consumer expenditure. This could be
71 possibly explained in presences of adjustment costs, noncompetitive market structure, profit maximizing motives
72 and non-linearities in supply & demand (Falkowski 2010).

73 According to the Peltzman (2000) majority of producer and consumer markets are often characterized by
74 asymmetrical price transmission. The distribution of welfare effects e.g. farmers' benefit due to rise in retail
75 price or consumer advantage due to fall in farm prices could not be materialized due the asymmetric price
76 movements (Tekguc 2013). In developing countries to examine the functioning of vertical food markets, it is
77 important to evaluate how marketing agents are delivering for the farmers and the consumers' welfare. The
78 conditions of agribusiness market play a vital role in determining the retail prices and marketing middlemen
79 (processors, distributors, retailers) often have enough market power to have upper hand over farm prices.

80 The potential causes of asymmetric price transmission could be the abuse of marketing power (Von Cramon-
81 Taubadel and Meyer 2004); intensity of competition in market (Bailey and Brorsen, 1989); elasticity of product
82 demand (Pletzam 2000); extent of product perishability (Reziti 2014); search costs in local markets (Chavas and
83 Mehta 2004); adjustment costs; menu and spatial costs (Goodwin and Harper 2000); government interventions
84 to support farm gate prices (Lass et al. 2001). The distribution efficiency of a product can be examined through
85 getting insight into the nature of relationship between producer and consumer prices. An asymmetric price
86 relationship is considered as an economic disadvantageous for producers and consumers ((Stewart and Blayney
87 2011).

88 In agriculture marketing, the distribution of profits and issues of marketing margins within the marketing
89 channels are important to be investigated. Analysis of demand and supply shocks assist to understand the
90 direction of market adjustments and price movements in moving goods from one level of marketing chain to
91 another. Globally the subject of price transmission has been widely studied for many commodities such as wheat
92 and wheat flour ?? As regards dairy products, although various studies had already been conducted on price
93 transmission mechanism and market cointegrations issues; however their conclusion and the evidences varies and
94 mixed across the geographical locations and commodities. ??havas and Metha (2004) carried out an empirical
95 analysis for the butter market in the US and they found a strong evidence of asymmetry in the adjustment of
96 retail prices. A study on whole milk price transmission elasticity was conducted by Capps and Sherwell (2007).
97 The applied Houck error correction model (ECM) for analysis and their results proved that an asymmetric price
98 transmission mechanism was present in farm-retail price relationship. Reziti (2014) found positive asymmetries
99 during their study on milk and butter in the dairy industry of Austria. Stewart and Blayney (2011) conducted
100 a study for the whole milk and cheddar cheese market in US and reported that asymmetric price movements
101 between farm and retail level. They proved that the price shocks between two levels were transmitted with a
102 delay as well as in an asymmetrical pattern. Recently, Reziti (2014) carried out a study in the Greek milk sector
103 and threshold error correction autoregressive model was applied on monthly price data ranging from January
104 1989 to April 2009. This study results detect a nonlinear price adjustment between milk consumer and producers
105 and abuse of market power by milk processor and retailers was observed.

106 **2 b) Statement of the Problem**

107 To analyze price adjustments in an unregulated milk marketing system and to evaluate the underlying symmetries
108 is a complex phenomenon. The available information about Pakistani milk market evidenced that milk producers
109 within prevailing milk supply chain are in a vulnerable position. Usually they sell milk to local milk collectors
110 (Dodhi) at the prices which are almost half of retailers' prices. In Pakistan some studies had been conducted on
111 rice and citrus markets; however so far no research is carried out to examine the vertical price transmission and
112 cointegration issues for milk marketing in Punjab province. Therefore for Pakistan's dairy sector, a research gap
113 exist to identify the behavior and the nature of relationship among milk marketing agents/ middlemen arising
114 from milk price shocks. This study is an attempt to undertake the vertical price transmission analysis and to gain
115 an insight into price adjustments among milk producers, wholesalers and retailers in four districts. The specific
116 objectives of this study were; (i) to examine the short run milk price variation among intermarket and intra-
117 marketing agents during flush and lean season of milk production; (ii) To analyze the nature of market integration
118 and the long run vertical price transmission between the prices of milk producers and consumers. Hence, this
119 study will deliver some valuable information on the directions of price adjustments and market integrations which
120 is expected to be useful for the stakeholders involved in milk supply chain of Pakistan.

121 **3 II.**

122 **4 Materials and Methods**

123 **5 a) Description of Study Area and Data Source**

124 The study area for this research was the south region of Punjab province. Agriculture and rearing of livestock is
125 the primary source of livelihood for rural residents of this geographical location in Pakistan. From south region of
126 Punjab province four districts namely Vehari, Lodhran, Bahawalpur and Muzaffargarh were purposively selected.
127 These districts have a rich population of livestock and milk production activities. Monthly average prices for
128 milk producer and consumer were collected from four districts of the Punjab. The data used for this research was
129 obtained from secondary sources. To acquire milk producer prices that match up with retail prices is a complex
130 proposition. Agriculture statistics of Pakistan (2010) was chosen as first source of data. Second source of data
131 was the essential food commodity price list which is monthly publicized from each of the District Coordination
132 Office (DCO). A continuous reliable source of data on milk producers' prices could not found as such; however
133 the data for one pair of milk consumer prices and milk producers' prices for four districts was estimated on
134 averages after discussions with livestock, dairy development officials and dairy industry experts. Monthly milk
135 price observations ranging from January 2010 to June 2016 were collected and undergone through data analysis.
136 The nominal price data provided by the agriculture statistical office and the DCO office was deflated to January
137 2010 in terms of the Pakistan consumer price index to calculate the real price change in milk. Variables are
138 transformed in logarithms.

139 **6 b) Methodology for Price Spread over Different Markets**

140 Efficiency analysis of marketing chain provides reliable information about price movements or spread within
141 markets and over different marketing agents. In this paper for calculating price spread over selected district
142 markets and for various marketing agents, we used Rudra's (1992) approach which is explained the price spread
143 by symbol \pm . The sign \pm indicate the midpoint of milk price to various market middlemen in a given market.
144 The symbol $+$ expressed the highest observed value and $-$ is for the lowest observed value. The intra-
145 market price variation is denoted by the symbol \pm . After estimating and comparing the values of \pm for different
146 middlemen within the same market or for different regional markets for the same middlemen gives some idea about
147 the inter-market and intra-market price variations. Rudra (1992) hypothesis for the calculation of price spread for
148 different markets and over different marketing middlemen was applied. This hypothesis explained that a market
149 of homogenous product becomes perfectly competitive as if the range of price variations for the homogenous
150 product within different markets (excluding transactions cost) in any particular marketing middlemen as well as
151 intermarketing agents for the same period is almost close to uniformity. In developing economies like Pakistan,
152 the agricultural inputs and outputs data related to market analysis are usually short-term in nature. Hence, in
153 determining the competitiveness of milk producers' and consumers' prices within districts markets, the Rudra's
154 (1992) estimates seem to be more pertinent and applicable.

155 **7 c) Selection of Price Series for Price Transmission Analysis**

156 Due to various milk marketing agents (i.e. milk collectors, wholesalers, processors, distributors and retailers),
157 there could be a number of possible combination of price series. However, we only emphasis on milk producer
158 and consumer level in the vertical milk market linkages and selected farm and retail prices. According to study
159 objectives, in this paper we applied different test for estimating the trend of price transmission. First of all, the
160 descriptive statistics was applied in order to examine the relationship between milk producer and consumer as
161 well as to describe the main features of a data collection. Certain other statistical tests were also applied to
162 validate the results.

163 8 d) Unit root Test, Cointegration Test and Granger's Causality 164 Test

165 It is very important to examine the price relationship over time; a) whether selected price series are stationary or
166 not, b) if the price series are nonstationary with a unit root, what is the type of co integrated orders, c) if price
167 series are co-integrated what is the direction of causality. If the price series are stationary at levels, then we can
168 apply "ordinary least square" estimation method to examine the relationship between two price series. But if the
169 series are nonstationary and have unit root then to determine the relationship, the series are taken at the first
170 or second difference levels and the Error Correction Models (ECM) is applied for the purpose. We applied the
171 commonly developed Augmented Dicky-Fuller test to assess whether the selected price series have unit root or
172 not. The null hypothesis for milk producer and consumer price series was that; it is non-stationary having a unit
173 root. Null hypothesis results, if fail to reject H₀ rather accept it, meaning that price series have unit root and
174 are non-stationary. The required lag number for ADF test is determined by using Schwarz information criteria
175 (SIC).

$$176 Pt = \alpha + \beta t + \gamma \ln C + \epsilon \quad (1)$$

177 Where Pt = denote prices natural logarithm C denote intercept t is a linear time trend If the selected time
178 series price data is stationary on differencing, then the co-integrated order [I (1)] between price series is said to
179 be present. We used Johansen (1988) test to find out the cointegration relationship between the price series.
180 $\alpha + \beta t + \gamma \ln C + \epsilon \quad (2)$

181 If Ppt and Pct price series are co-integrated and in the order of I(1), then the residuals V_t would be I(0).

182 To examine the long run conintegration between two price series, we applied Granger causality test. The
183 presence of long run relationship between two price series is detected if a significant information is statistically
184 predicted by P₁ about the future values of P₂. The relationship is defined as P₁ have Grangercausality for
185 P₂.In this study the estimation of Grangercausality test was very important; as no prior information on causal
186 relationship between milk producer and consumer prices is established in literature for milk marketing system of
187 Punjab. The null hypothesis was formulated in such a way that its rejection would provide Granger causality for
188 P₁ to the price series P₂.

189 9 e) Empirical Models used for Price Transmission

190 Meyer and Von Cramon-Taubadel (VECM) model (2004) was used to examine the price dynamic relationship
191 for non-stationary and co-integrated price series (Ppt and Pct). The Vector Error Correction model assumes the
192 equation as follows: $\Delta P_{t-1} = \alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_n \epsilon_{t-n} + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} \quad (3)$

193 Where ΔP_t and ΔP_{t-1} stand for the changes in farm-gate and lagged changes in farm-gate prices. ΔC_t and ΔC_{t-1} denotes the changes in retail and lagged changes in farm-gate prices. The speed of adjustment to
194 long run equilibrium is denoted by an error correction term α_1 . While α_2 and α_3 indicates price transmission
195 elasticity in long-run and short-run between two prices respectively. ϵ_t represent the white noise (residual). The
196 white noise (ϵ_t) is expected to be zero at the long run equilibrium levels of both Pct and Ppt. However α_2 and α_3
197 could be either positive or negative when both price series are away from their long run equilibrium. In other
198 words; the whitenoise (ϵ_t) would be positive if Pct series is well above its long-run equilibrium and (ϵ_t) is negative
199 in the opposite case of Ppt series. The error correction term (ECT) entered into Error Correction Model is a
200 residual of equation (1) which is lagged by one period. $\Delta P_{t-1} = \alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} \quad (4)$

$$201 \text{Where } \alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} = 0 \quad (5)$$

202 Granger and Lee (1989) in their study of US industry inventory proposed a modification in equation (2)
203 which enables to estimate the two co-integrated prices variables asymmetric price transmission. They included
204 additional dummy variables in the model and segmented the error correction term into ECT+ and ECT-.
205 $\Delta P_{t-1} = \alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} \quad (6)$

206 with $\alpha_1 > 0$ if $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} > 0$ and 0 otherwise, $\alpha_1 < 0$ if

207 ECT_{t-1} < 0 and 0 otherwise. The long -run asymmetry hypothesis in equation (3) is: $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} = 0$ it will
208 tested through F-test.

209 To assess both aspect of response variation, the contemptuous response term was segmented into positive and
210 negative components through Von Cramon-Taubadel and Flahlbusch (1994) which follow the form with $\alpha_1 > 0$
211 $\alpha_2 = 1$ if $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} > 0$ and 0 otherwise, $\alpha_2 = 0$ if
212 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} < 0$ and 1 otherwise. $\alpha_3 = 1$ if
213 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} > 0$ and 0 otherwise, $\alpha_3 = 0$ if
214 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} < 0$ and 1 otherwise. $\alpha_4 = 1$ if
215 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} > 0$ and 0 otherwise, $\alpha_4 = 0$ if
216 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} < 0$ and 1 otherwise. $\alpha_5 = 1$ if
217 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} > 0$ and 0 otherwise, $\alpha_5 = 0$ if
218 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} < 0$ and 1 otherwise. $\alpha_6 = 1$ if
219 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} > 0$ and 0 otherwise, $\alpha_6 = 0$ if
220 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} < 0$ and 1 otherwise. $\alpha_7 = 1$ if
221 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} > 0$ and 0 otherwise, $\alpha_7 = 0$ if
222 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} < 0$ and 1 otherwise. $\alpha_8 = 1$ if
223 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} > 0$ and 0 otherwise, $\alpha_8 = 0$ if
224 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} < 0$ and 1 otherwise. $\alpha_9 = 1$ if
225 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} > 0$ and 0 otherwise, $\alpha_9 = 0$ if
226 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} < 0$ and 1 otherwise. $\alpha_{10} = 1$ if
227 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} > 0$ and 0 otherwise, $\alpha_{10} = 0$ if
228 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} < 0$ and 1 otherwise. $\alpha_{11} = 1$ if
229 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} > 0$ and 0 otherwise, $\alpha_{11} = 0$ if
230 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} < 0$ and 1 otherwise. $\alpha_{12} = 1$ if
231 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} > 0$ and 0 otherwise, $\alpha_{12} = 0$ if
232 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} < 0$ and 1 otherwise. $\alpha_{13} = 1$ if
233 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} > 0$ and 0 otherwise, $\alpha_{13} = 0$ if
234 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} < 0$ and 1 otherwise. $\alpha_{14} = 1$ if
235 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} > 0$ and 0 otherwise, $\alpha_{14} = 0$ if
236 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} < 0$ and 1 otherwise. $\alpha_{15} = 1$ if
237 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} > 0$ and 0 otherwise, $\alpha_{15} = 0$ if
238 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} < 0$ and 1 otherwise. $\alpha_{16} = 1$ if
239 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} > 0$ and 0 otherwise, $\alpha_{16} = 0$ if
240 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} < 0$ and 1 otherwise. $\alpha_{17} = 1$ if
241 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} > 0$ and 0 otherwise, $\alpha_{17} = 0$ if
242 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} < 0$ and 1 otherwise. $\alpha_{18} = 1$ if
243 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} > 0$ and 0 otherwise, $\alpha_{18} = 0$ if
244 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} < 0$ and 1 otherwise. $\alpha_{19} = 1$ if
245 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} > 0$ and 0 otherwise, $\alpha_{19} = 0$ if
246 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} < 0$ and 1 otherwise. $\alpha_{20} = 1$ if
247 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} > 0$ and 0 otherwise, $\alpha_{20} = 0$ if
248 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} < 0$ and 1 otherwise. $\alpha_{21} = 1$ if
249 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} > 0$ and 0 otherwise, $\alpha_{21} = 0$ if
250 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} < 0$ and 1 otherwise. $\alpha_{22} = 1$ if
251 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} > 0$ and 0 otherwise, $\alpha_{22} = 0$ if
252 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} < 0$ and 1 otherwise. $\alpha_{23} = 1$ if
253 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} > 0$ and 0 otherwise, $\alpha_{23} = 0$ if
254 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} < 0$ and 1 otherwise. $\alpha_{24} = 1$ if
255 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} > 0$ and 0 otherwise, $\alpha_{24} = 0$ if
256 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} < 0$ and 1 otherwise. $\alpha_{25} = 1$ if
257 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} > 0$ and 0 otherwise, $\alpha_{25} = 0$ if
258 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} < 0$ and 1 otherwise. $\alpha_{26} = 1$ if
259 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} > 0$ and 0 otherwise, $\alpha_{26} = 0$ if
260 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} < 0$ and 1 otherwise. $\alpha_{27} = 1$ if
261 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} > 0$ and 0 otherwise, $\alpha_{27} = 0$ if
262 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} < 0$ and 1 otherwise. $\alpha_{28} = 1$ if
263 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} > 0$ and 0 otherwise, $\alpha_{28} = 0$ if
264 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} < 0$ and 1 otherwise. $\alpha_{29} = 1$ if
265 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} > 0$ and 0 otherwise, $\alpha_{29} = 0$ if
266 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} < 0$ and 1 otherwise. $\alpha_{30} = 1$ if
267 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} > 0$ and 0 otherwise, $\alpha_{30} = 0$ if
268 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} < 0$ and 1 otherwise. $\alpha_{31} = 1$ if
269 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} > 0$ and 0 otherwise, $\alpha_{31} = 0$ if
270 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} < 0$ and 1 otherwise. $\alpha_{32} = 1$ if
271 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} > 0$ and 0 otherwise, $\alpha_{32} = 0$ if
272 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} < 0$ and 1 otherwise. $\alpha_{33} = 1$ if
273 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} > 0$ and 0 otherwise, $\alpha_{33} = 0$ if
274 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} < 0$ and 1 otherwise. $\alpha_{34} = 1$ if
275 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} > 0$ and 0 otherwise, $\alpha_{34} = 0$ if
276 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} < 0$ and 1 otherwise. $\alpha_{35} = 1$ if
277 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} > 0$ and 0 otherwise, $\alpha_{35} = 0$ if
278 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} < 0$ and 1 otherwise. $\alpha_{36} = 1$ if
279 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} > 0$ and 0 otherwise, $\alpha_{36} = 0$ if
280 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} < 0$ and 1 otherwise. $\alpha_{37} = 1$ if
281 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} > 0$ and 0 otherwise, $\alpha_{37} = 0$ if
282 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} < 0$ and 1 otherwise. $\alpha_{38} = 1$ if
283 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} > 0$ and 0 otherwise, $\alpha_{38} = 0$ if
284 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} < 0$ and 1 otherwise. $\alpha_{39} = 1$ if
285 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} > 0$ and 0 otherwise, $\alpha_{39} = 0$ if
286 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} < 0$ and 1 otherwise. $\alpha_{40} = 1$ if
287 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t + \alpha_4 \epsilon_{t-1} + \dots + \alpha_{n+1} \epsilon_{t-n+1} + \dots + \alpha_{n+k} \epsilon_{t-n+k} > 0$ and 0 otherwise, $\alpha_{40} = 0$ if
288 $\alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta C_t + \alpha_3 \epsilon_t +$

224 In the second step; we applied a variable addition test and fitted residual "t" was estimated through marginal
225 model (5); {in the structural model (2) insignificant results for fitted residual in the structural model, a slightly
226 conditioned "Error Correction Model" is assumed on short-run weekly exogenous variables. To proceeds further
227 and to test the significance of long run parameters with respect to weak exogeneity, the ECTt-1 is added from
228 equation (1) to equation (5).

229 However, if the results of all tests revealed a non-cointegration between variables, the VAR model can be
230 specified and estimated. In this situation, the two equation included in VAR model can be written as follows:??
231 ?? = ?? °+ ?? 1 ?? ?? 1 + ?? ? ? + ?? ?? ?? ?? + ?? 1 ?? ?? ?? 1 + ?? ? . + ?? ?? ?? ??
232 ?? + ?? ??(9) ?? ?? = ?? °+ ?? 1 ?? ?? 1 + ?? ? ? + ?? ?? ?? ?? + ?? 1 ?? ?? ?? 1 + ?? ? .
233 + ?? ?? ?? ?? + ?? ??(10)

234 Where P_{pt} and P_{ct} are milk producer and consumers prices, and P_{pt-k} and P_{ct-k} are lagged milk producer
235 and consumers prices respectively.

236 III.

237 10 Results and Discussion

238 11 a) Descriptive Statistics of Milk Prices at Dairy farmers and 239 Milk Consumer level

240 In this section, we would discuss the price transmission and price adjustment analysis between the milk producer
241 and consumer prices for selected four districts of Punjab province. The important descriptive statistics derived
242 from the analysis of respective price series are mentioned in Table 1. Average price per liter of fresh raw milk for
243 producers ranged from was 23 PKR to 48 PKR. Average retail milk price ranged 40PKR/L to 78PKR/L. The
244 information reported in Table 1, demonstrates noteworthy difference between farm and retail level milk prices
245 among four districts during the period 2010 to 2016. The relative variation in milk prices under investigation are
246 likely due to unregulated marketing system and cost of transporting milk from rural areas to urban center.

247 12 b) Seasonality and Milk Price Variations

248 In Pakistan, the seasonality is an important factor and the milk production cycle encompassed flush and lean
249 seasons. Milk production from December 15 th to April 15 th is considered as flush season whereas, from 16 th
250 April to August 15 th is lean season. The rest of period also varies between mini flush (September to October) and
251 mini lean (November and April). This variation in milk production is due to changing weather and availability of
252 fodder production in hot summer and winter. The prices during flush and lean seasons remained fluctuated. In
253 flush season, milk production is more but consumption is less. Therefore, milk collectors (Dhodi) decrease milk
254 prices. On the other hand during the lean season, extreme hot summer / or in winter months, the consumers
255 like to consume more milk in the and (4

256 13 (ii) Figures within parenthesis indicate percentage variation 257 of price during milk peak and lean season

258 The estimation of fresh milk price variation was not far from uniformity when milk is sold directly from producers
259 to consumers, as the percentage of price variation lies between 4.14 and 6.33. However, the percentage of
260 price variation lies between 11.71 and 19.56 for inter-markets and/or intra-marketing agents which was far
261 from uniformity. The possible explanation of this pattern may be as when milk collectors (Dhodi), small milk
262 processors and retailers engaged in milk marketing chain; they added more transactions costs and absorb highest
263 price margin. The highest percentage change in price was absorbed by milk collectors (Dhodi), followed by
264 processors and retailers. The results in Table-2 explained the significant impact of seasonality on milk prices.
265 The price for per liter was a little high during the lean season for all district markets and/or for all types of
266 marketing middlemen. The graphical representation also explained that milk prices exhibit seasonal patterns
267 for flush and lean season (Figure 2). The above Figure-2 demonstrates that milk producer and consumer prices
268 increased and decreased with seasonal fluctuations and this trend suggest a price transmission symmetry. The
269 price trend lines also indicate that large increases in consumer prices are followed by slightly increases in milk
270 producer prices. This happened due to the existence of transactions costs or relatively high marketing margins
271 at retail level.

272 14 Global Journal of Management and Business Research

273 15 c) Stationarity of Price series

274 Figure 2 depicted that both price series i.e. milk producer and consumer prices contained a consistent time trend
275 with a shift. Stationarity of price series was checked with unit root test to analyze the prescribed models for price
276 transmission at milk producer and consumer level. Thus, a Unit root test at level and the first difference was
277 estimated by applying Augmented Dickey -Fuller (ADF) procedure and the outcomes are reported below in Table
278 3. The null hypothesis about the stationarity of both price series were tested at levels and the first difference

279 through ADF-test. Appropriate lag length was determined by using Akaike Information Criterion (AIC) and the
280 Schwarz Information Criterion (SIC). The results showed that null hypothesis was rejected for all variables on
281 first difference and the test statistics were significant at 5 % and 1% level. Both price series for has one serial
282 unit root but not at the corresponding frequencies. Hence, all the price variables were of the order one I (1), and
283 one cointegrating vector exist between each pair of milk producer and consumer prices at retail level (see Table
284 3).

285 16 d) Co-integration Outcomes

286 These results support to proceed for cointegration tests to check the long-run equilibrium relationship.
287 Johannsen's co-integration procedure in a dynamic framework suggested that if a long-run relationship exist
288 between both price series then; the movements among them will be bounded together and/or will be co-integrated.
289 The outcome of Johansen test for both price series are presented under Table 4. The next important step in price
290 transmission analysis of milk marketing was to determine the asymmetry of price movements between producer
291 and consumer. Granger causality test was applied to find out the possible direction of price movements between
292 marketing agents. To avoid from heteroscedasticity and Autocorrelation-consistent (HAC), seasonal dummies
293 were added in the model. Granger causality test findings are presented in Table 5. milk producer ? milk
294 collector/dodhi ? milk processors ? distributors ? retailers

295 The Granger causality analysis suggested two parallel effects of upward and downward price movement in a
296 typical milk marketing chain :

297 The outcomes of Granger Causality test proved that in our marketing chain, there is a downward price
298 mechanism. Hence, the direction of causality was from milk consumers to milk producer because the milk
299 marketing middlemen have enough market power. This situation dragged the dairy farmers in a vulnerable
300 position and deprived them from getting fair prices of their milk production. This problem stemmed from two
301 major reasons; (i) milk is a perishable commodity and it cannot be retained or stock for a longer period of time
302 (ii) the Pakistani's dairy farmers have not established and joined effective cooperative organizations. Hence, this
303 poor structural arrangement of dairy sector compelled the dairy farmers in a price taker position.

304 17 f) Estimates of Vector Error Correction Model and Price 305 Transmission

306 The findings presented in Table 3 & 4 explained that the trace and Maxi-eigen statistics were greater than
307 critical values; price series were stationary at first determine appropriate lag lengths. The statistics values of
308 both ? trace and ? max test suggested that the null hypothesis was rejected for the zero cointegrating vectors
309 and long-run relationship for one cointegrating vector was present between each price series (see Table 4). The
310 findings of VECM revealed that there exist positive relationship for outward price movements (milk producer ?
311 milk consumer) and negative relationship is found for downward movement (milk consumer ? milk producer).

312 18 Global Journal of

313 The test of asymmetry for short-run suggested that the pattern of price movements for increase in prices was
314 different than to decrease in prices (Table 6). The coefficients of $ECT \pm$ showed that increase or decrease in
315 consumer prices will affect the change in producer prices; however, greater price variations were observed for
316 long to consumer price in order to retain its profit at fixed level (deviation equal to zero).The coefficient of
317 VECM expressed price adjustments during a period of time. For one month (i.e. short-run period) one unit
318 positive change in consumer's price would approximately adjust milk producer price 7.6% whereas in long-run
319 equilibrium it is around 28% (Table 6). Hence, decrease in milk producer prices during flush season in long-run
320 equilibrium did not transmitted to consumer welfare. This is attributable to marketing middlemen/retailers who
321 absorb all the positive price deviation and did not shift this advantage to consumers. Consequently, coefficients
322 of the segmented ECT revealed the asymmetric price transmission was obvious in milk marketing chain, Table 6.
323 Our findings were also supported by a study conducted by Acosta and Valdes (2013) who analyzed the vertical
324 milk market price transmission pre-consignation methods. Their study also suggested positive price transmission
325 asymmetries and concluded that increase in farmer prices are passed on more quickly and more completely to
326 retail prices than to decrease in farmer prices.

327 19 IV. Conclusions and Recommendations

328 This study was carried out to examine the price adjustments for short-run and long-run equilibrium. The
329 symmetry of price adjustments between milk producer and consumer was studied through price transmission
330 analysis. Time series data of milk prices ranged from January 2010 to June 2016 for producer and consumer
331 were analyzed by applying VECM along with descriptive statistics. Both the price series were stationary at
332 first difference; the Johansen cointegration test provided the evidence of long term cointegration in prices. The
333 estimates of Vector Error Correction model (VECM) revealed that milk consumer price (Pct) was exogenous
334 and the outcomes of Granger causality test validate the evidence of unidirectional price causality from farm to
335 retail side and not vice versa. The analysis provide an indication that milk marketing system working in selected

336 districts is imperfect , market power is on the demand side and asymmetric price transmission is evident in milk
 337 supply chain. The possible justification for this could be that marketing middlemen earn large profit margins
 338 when milk price increases during hot summer or winter (lean season). The middlemen still make abnormal
 339 profit during flush seasons when milk supply is more but its demand declines. Thus, prices are transmitted from
 340 consumers to milk producers in an asymmetric mode and middlemen abuse their market power to absorb positive
 341 price shock or transmit with delay in long run equilibrium. The pattern of asymmetric price transmission towards
 342 the principal stakeholders i.e. milk producers and consumers during peak and lean seasons of milk production,
 343 not only lowers the dairy farmers' profitability but also abolish the consumer welfare effects.

344 The study suggest that the asymmetric flow of prices can be make smaller if milk producers are integrated
 345 into small or large milk cooperatives organizations. The milk collecting associations will help to reduce the
 346 transactions costs, offer reliable milk market with better returns and minimize the middlemen role/margins.
 347 The public or private interventions are also recommended to improve the milk marketing system of Pakistan.
 348 It could be achieved through better storage or low cost chilling units provided to milk producers at substantial
 349 rates for enhancing the perishable life of milk. These efforts would results to capture a larger share of milk
 350 producer in consumer price. Thus, study evidenced for market imperfections could be utilized for achieving a
 351 close collaboration of milk producers to restructure the milk supply system in Punjab province. Such collaboration
 352 would enable the farmers to strengthen their negotiation power in the vertical market linkages and having a better
 353 position for taking the price decision.

V. ^{1 2}

1

Districts	Mean	Median	Standard Deviation	Minimum	Maximum
Milk Prices at Farm Level					
Vehari	36	35	1.45	23	38
Lodhran	34	33.5	2.36	24	36
Bahawalpur	35	34	1.34	25	37
Muzaffargarh	38	36	1.36	25	38
Milk Prices at Retail Level					
Vehari	45	44	2.35	35	77
Lodhran	46	45.6	3.56	36	75
Bahawalpur	45	44	2.35	35	74
Muzaffargarh	46	45	3.5	38	78

Source: Authors calculations from collected data, 2016.

Figure 1: Table 1 :

354

¹©20 16 Global Journals Inc. (US)

²Dairy Farmers' Welfare Losses from Farm-To-Retail Milk Price Adjustments: Highlight on Market Integration and Price Transmission

2

form of milk beverages and tea. Therefore, in summer and winter due to lean season and more consumption, milk prices rise up very high towards consumers' side but a slight increase is observed for milk producers. The market integration and price variation among districts

District	Flush Season Milk Price Adjustments among Middlemen				Retailers/ Milk Shops
	Milk Producers	Milk Collectors	Small Pro- cessors (Dhodi)		
Vehari	45.75+2.90 (6.33)	55.30+10.10 (18.3)	62.65+8.25 (13.16)		63.5+8.00 (12.6)
Lodhran	43.50+2.50 (5.74)	57.00+9.90 (17.5)	64.25+8.75 (13.61)		65.00+8.25 (12.61)
Bahawalpur	46.25+2.00 (4.32)	54.00+9.88 (18.3)	63.50+7.5 (11.8)		64.00+8.20 (12.8)
Muzaffargrah	45.00+2.25.00 (5)	56.50+9.75 (17.27)	61.25+7.7 (12.57)		63.50+7.75 (12.2)
Lean Season Milk Price Adjustments among Middlemen					
Vehari	48.25+2.00 (4.14)	58.00+10.50 (18.1)	66.25+8.00 (12.07)		68.00+8.25 (12.13)
Lodhran	47.50+2.50 (5.26)	57.50+11.25 (19.56)	67.25+8.75 (13.01)		69.00+9.50 (13.76)
Bahawalpur	49.35+2.20 (4.45)	58.25+10.25 (17.6)	68.25+8.25 (12.08)		70.00+8.20 (11.71)
Muzaffargrah	48.55+2.50 (5.14)	60.20+10.25 (17.02)	65.25+8.00 (12.26)		68.50+8.50 (12.4)

[Note: Note: Price for standard milk (Fat 4.5%, SNF 8.5% and CLR 27.74) in lean season by Milk Producers was Rs.48 and flush season it was Rs.43 during 2015-16.]

Figure 2: Table 2 :

3

Variables	Levels	First Difference				Critical Value
		PP	ADF	PP	5%	
Producer Price	ADF					1%
	-2.39	-	-7.16	-	-	-3.44
Consumer Price	1.43			6.18	2.83	
	-2.26	-	-5.43	-	-	-3.44
	1.56			5.7	2.83	

Source: Authors calculation, 2016. Note: * =0.05 level (5%) ** = 0.01 level (1%) significance

Figure 3: Table 3 :

4

District	Hypnotized co-integration	Trace test	p-value	Max-Eigen value	p-value
Vehari	None	21.64	0.0013*	19.63	0.0103*
	At most	2.156	0.13	2.156	0.1302
	1				
Muzaffargrah	None	9.37	0.321	9.21	0.237
	At most	0.063	0.853	0.063	0.853
	1				
Lodhran	None	19.83	0.0011*	17.38	0.0113*
	At most	2.36	0.129	2.36	0.129
	1				
Bahawalpur	None	23.64	0.0023*	21.27	0.0023*
	At most	1.85	0.183	1.85	0.183
	1				

Source: Authors findings, 2016. ** MacKinnon-Haug-Michelis (1999) p-value and *indicate rejection of the 1 level. Trace and Max-eigen value tests indicate 1 co integration equation at 0.05 levels.

The coinegrating vector in Johansen (1998) test included a constant term with formulation of null and alternative hypothesis [H 0 = the number of cointegrating vectors is zero (r=0); H 1 =one cointegrating vector is (r=1)]. AIC criteria were used to

e) Detection of Milk Price Symmetry

Figure 4: Table 4 :

5

2016:06

Figure 5: Table 5 :

6

2016
Year
Volume XVI Issue VII Version I
Management and Business Research () B

[Note:);Capps and Sherwell (2007); and, (Yong and Nie 2016) studies, where asymmetric price transmission was also evidenced for both long run and short run equilibrium. The estimates in Table6conclude that when milk producer price increases one unit, the milk retailers contemptuously shift this one unit increase]

Figure 6: Table 6 :

355 .1 Acknowledgement

356 This study was carried out under National Natural Science Foundation, China (7167031183) under a major project
357 "Impact of infant powder milk safety trust index on product competitiveness-Index measurement, construction
358 of related market model and market simulation" (G0300502).

359 [Government Of Pakistan ()] *Agricultural statistics of Pakistan. Ministry of Food, Agriculture and Livestock*,
360 Government Of Pakistan . 2010. Economic Wing, Islamabad, Pakistan.

361 [Acquah and Dadzie ()] 'An application of the von Cramon-Taubadel and Loy error correction models in
362 analyzing asymmetric adjustment between retail and wholesale maize prices in Ghana'. H G Acquah , S
363 K N Dadzie . *Journal of Development and Agricultural Economics* 2010. 2 p. .

364 [Zia ()] 'Analysis of Milk Marketing Chain-Pakistan'. U Zia . *Italian Journal of Animal Science* 2007. 6 p. .

365 [Yong and Nie ()] 'Asymmetric competition in food industry with product substitutability'. C Y Yong , P Y Nie
366 . *Agric. Econ. -Czech* 2016. 62 p. .

367 [Ben and Gil ()] 'Asymmetric price transmission in the Spanish lamb sector'. K M Ben , J M Gil . *European
368 Review of Agricultural Economics* 2007. 34 p. .

369 [Von and Meyer ()] 'Asymmetric Price transmission: A Survey'. C T Von , S Meyer . *Journal of Agricultural
370 Economics* 2004. 55 p. .

371 [Azzam ()] 'Asymmetry and rigidity in farm-retail price transmission'. A M Azzam . *American Journal of
372 Agricultural Economics* 1999. 81 p. .

373 [Government Of Pakistan ()] *Economic Survey of Pakistan, Economic affairs wing, Finance ministry*, Govern-
374 ment Of Pakistan . 2016. Islamabad.

375 [Capps and Sherwell ()] 'fluid milk'. O Capps , J P Sherwell . *Agribusiness* 2007. 23 p. .

376 [Von and Fahlbusch ()] *Identifying asymmetric price transmission with error correction models. Poster Session
377 EAAE European Seminar*, C T Von , S Fahlbusch . 1994. Reading U.K.

378 [Lass et al. ()] 'Impacts of the Northeast dairy compact on New England retail prices'. D A Lass , M Adanu , P
379 G Allen . *Agricultural and Resource Economics Review* 2001. 30 p. .

380 [Granger and Lee ()] 'Investigation of production, sales and inventory relationships using multi-cointegration
381 and non-symmetric error correction models'. C W J Granger , T H Lee . *Journal of Applied Econometrics*
382 1989. 4 p. .

383 [Jung and Ahn ()] 'Multiple-regime price transmission between wheat and wheat flour prices in Korea'. H H Jung
384 , B I Ahn . *Agricultural Economics (Země?e?ská Ekonomika)* 2015. (12) p. .

385 [Stewart and Blayney ()] 'Oligopoly and price transmission in Turkey's fluid milk market'. H Stewart , D P
386 Blayney . *Agricultural and Resource Economics Review* 2011. 2013. 40 p. . (Agribusiness)

387 [Rudra ()] *Political Economy of Indian Agriculture (Calcutta: KP Bhagchi and Co)*, A Rudra . 1992.

388 [Bailey and Brorsen ()] 'Price Asymmetry in Spatial Fed Cattle Markets'. D Bailey , B W Brorsen . *Western
389 Journal of Agricultural Economics* 1989. 14 p. .

390 [Chavas and Mehta ()] 'Price Dynamics in a Vertical Sector: The Case of Butter'. J Chavas , A Mehta . *American
391 Journal of Agricultural Economics* 2004. 86 p. .

392 [Reziti ()] 'Price transmission analysis in the Greek milk market'. I Reziti . *Journal of Economics and Business*
393 2014. 64 p. .

394 [Falkowski ()] 'Price transmission and market power in a transition context: evidence from the Polish fluid milk
395 sector'. J Falkowski . *Post-Communist Economies* 2010. 22 p. .

396 [Serra and Goodwin ()] 'Price transmission and the asymmetric adjustment in the Spanish dairy sector'. T Serra
397 , B K Goodwin . *Applied Economics* 2003. 35 p. .

398 [Goodwin and Harper ()] 'Price transmission, threshold behavior, and asymmetric adjustment in the U.S. pork
399 sector'. B K Goodwin , D C Harper . *Journal of Agricultural and Applied Economics* 2000. 32 p. .

400 [Peltzman ()] 'Prices rise faster than they fall'. S Peltzman . *Journal of Political Economy* 2000. 108 p. .

401 [Shinoj et al. ()] 'Spatial price integration and price transmission among major fish markets in India'. P Shinoj ,
402 B G Kumar , R Sathiadhasb , K K Dattaa , M Menona , S K Singha . *Agricultural Economics research* 2008.
403 p. .

404 [Johansen ()] 'Statistical analysis of cointegrating vectors'. S Johansen . *Journal of Economic Dynamics and
405 Control* 1988. 12 p. .

406 [Rezitis and Reziti ()] 'Threshold cointegration in the Greek milk market'. A N Rezitis , I Reziti . *Journal of
407 International Food & Agribusiness Marketing* 2011. 23 (3) p. .

408 [Awokuse and Wang ()] 'Threshold effects and asymmetric price adjustment in U.S. dairy markets'. T O Awokuse
409 , X Wang . *Canadian Journal of Agricultural Economics* 2009. 57 p. .

410 [Abdulai ()] 'Using threshold cointegration to estimate asymmetric price transmission in the Swiss pork market'.
411 A Abdulai . *Applied Economics* 2002. 34 p. .