

Evaluation of Portfolio Performance of the Investment Corporation of Bangladesh's Mutual Funds

Abu Bakar Seddeke

Received: 10 December 2015 Accepted: 2 January 2016 Published: 15 January 2016

5

Abstract

The number of mutual funds that were professionally managed is on the rise. Consequently, the importance of evaluating the performance of mutual funds has also increased. Investors prefer investing in such stocks that have performed better compared to other alternatives since investors always like to choose fund managers on a comparative basis. This study has endeavoured to address this issue by measuring the performance of mutual funds managed by ICB (Investment Corporation of Bangladesh) through Treynor Index, Sharpe Index, Jensen Alpha, and Fama Decomposition. This study has found that the performance of ICB mutual funds is satisfactory in the context of mutual funds sector of Bangladesh. However, there remain several shortcomings in managing the portfolios by the portfolio managers of ICB. Much of the underperformance of ICB mutual funds is attributable to the bureaucratic systems and structural rigidity of ICB.

18

Index terms— ICB mutual funds, portfolio performance, tryenor index, sharpe index, jensen alpha, fama decomposition, net selectivity.

1 Introduction

ver the last few decades the debate on the ability of mutual funds to outperform the market remains unsettled. Many early researchers on the performance of mutual fund outlined the difficulty of outperforming the market rather mutual funds frequently perform inferior to the market (Angelidis, Giannidis, and Tessaromatis, 2014;Fama, 1965;Sharpe, 1966;Jensen, 1968). Some later studies have reported favouring mutual funds, but most of the average funds still fail to exhibit above-normal performance (Treynor and Black, 1973;Blake and Timmermann, 1998;Haslem, 2003). However, the debate on the ability of mutual funds to outperform the market has further steered by the introduction of the methodology of measuring and comparing the performance of mutual funds for better investment decisions. In Bangladesh, the mutual funds sector is subtle compared to the capital market of the country. In many countries, mutual fund assets constitute close to 50% of market capitalisation, but mutual funds asset is less than 3% of total capital market in Bangladesh ??ICB, 2016).The investors of Bangladesh are being offered with small O

2 Literature Review

The CAPM model has got popular attraction because it offered a simple framework which predicts In financial market, measurement of portfolio performance is crucial. Portfolio performance measurement helps an investor to make better investment decisions and lower its investment risk. However, measurement of portfolio performance is not a new phenomenon rather it has begun in the early 1950s. At that time, investors measured portfolio performance based on the returns of individual securities without considering the risk associated with the individual securities (Khedmatgozar, Kazemi, and Hanafizadeh, 2013). After the introduction of "Modern Portfolio Theory" by Markowitz in 1952 investors and portfolio managers are benefitted by the framework provided by ??arkowitz (1952). The framework proposed by ??arkowitz (1952) entails that investors should be compensated for taking additional risk. Later in 1959, Markowitz also developed the Capital Asset Pricing Model (CAPM) which provided a risk-inclusive portfolio evaluation process (Francis and Archer, 1979;Prigent,

4 METHODOLOGY

44 2007;Zhao, 2014). the risk of a portfolio and measures the relationship between risk and expected return (Brown
45 and Wu, 2016). The empirical literature on portfolio management particularly focused on measurement of
46 portfolio performance. Many researchers have developed several measurement techniques and models. Treynor
47 and Black (1973) developed an index which measures the risk-adjusted performance of a portfolio. Treynor's
48 Index is a useful measurement technique to measure the excess return of a portfolio per unit of risk. Beta
49 measures the risk; the higher the beta score goes, the higher the excess return per unit of risk generated by
50 the portfolio. Sharpe (1966) developed a ratio to measure the risk-adjusted return of a portfolio. The Sharpe
51 Index later became the industry standard for measuring the risk-adjusted return from a portfolio. The index
52 is the average return earned more than the risk-free rate per unit of volatility. The performance of a portfolio
53 associated with the risk-taking activities can be isolated when mean return subtracts the risk-free rate (Webster,
54 2014). The calculation of Sharpe ratio for such a portfolio containing zero risks is very simple as the ratio will
55 be exactly equal to zero. The higher the Sharpe ratio, the more attractive the risk-adjusted return from the
56 portfolio.

57 Further development of portfolio performance measurement techniques has resulted in Jensen's Alpha, which
58 is another risk-adjusted performance measure. Jensen's Alpha represents the average return on a portfolio over
59 and above that predicted by the CAPM given the portfolio's beta and the average market return. However,
60 these measurement techniques have been widely used to measure the performance of portfolios. Empirical
61 studies also considered studying these measurement techniques and their effectiveness in measuring mutual fund
62 performance. For example, the study performed by Tykvová (2006) entails that average mutual funds had no
63 ability to identify and select undervalued stocks and a negative ability to time the market while a few mutual
64 funds exhibit consistency in identifying and selecting undervalued stocks. The study has utilised the Jensen's
65 Alpha measurement to measure the financial performance of mutual funds.

66 The factor that controls returns can be monitored in the study of Brown and Wu (2014) and has found
67 that these factors explain the persistence in portfolio performance of mutual funds. This study has utilised
68 the Sharpe Index and Jensen Alpha to measure mutual fund performance. However, the study of Brown and
69 Wu (2014) failed to explain the persistence prevailing in the significant underperformance of the worst mutual
70 funds. Treynor's Index has used in the study performed by Haque (2014) where the survivorship bias in mutual
71 funds has demonstrated. The study concluded that mutual funds performed significantly worse compared to the
72 market at an aggregate level. However, the study carried out by Wu and Brown (2014), and Arora (2015) have
73 also demonstrated that mutual funds failed to perform well compared to the market and also fails to exhibit
74 abovenormal performance.

75 However, the debate on the ability of mutual funds to outperform the market has further steered by the
76 introduction of the methodology of measuring and comparing the performance of mutual funds for better
77 investment decisions. Angelidis, Giamouridis, and Tessaromatis (2014) have examined the effectiveness of
78 benchmarks to weight small mutual funds. The study concluded with a cautious note concerning the use of
79 benchmark because it tracks the calculation of Jensen's Alpha by weighing small mutual funds. The study of
80 Kuhle (2012) further suggested that calculations and measurements that are unique to the period or type of fund
81 or choice of benchmark should not be used to make generalised conclusion concerning the performance of mutual
82 funds.

83 MacIsaac (2014) has measured the mutual funds' performance considering the Jensen Alpha measurement.
84 The study has concluded that mutual funds performed comparatively better than other industries. However,
85 the study conducted by Khedmatgozar, Kazemi, and Hanafizadeh (2013) found that selection of benchmark,
86 composition of mutual fund portfolio, survivability, and non-CAPM return-generating factors may stress the
87 performance measurement procedure. However, the measurement techniques i.e. Sharpe Ratio, Treynor Index,
88 Jensen Alpha, and so forth are not free from criticisms. Although the measurement techniques, used in this study,
89 have some limitations, these techniques have been investigated by many notable researchers and this study has
90 also considered these techniques to evaluate the mutual funds' performance of ICB.

91 3 III.

92 4 Methodology

93 This study aimed at applying theoretical knowledge of finance and applying the data and information obtained
94 from ICB and related sources to evaluate the performance of ICB's Mutual Funds. ICB is the pioneer in the
95 mutual funds industry of Bangladesh and one of the best performing investment banks. For these reasons ICB
96 mutual funds have been selected for this study. However, to make the analysis and to conduct this study, all
97 necessary data have been collected from both primary and secondary data sources. Primary data have been
98 gathered from the official database and authorised personnel of ICB. Conversely, secondary data have been
99 collected from annual reports of ICB mutual funds, Planning and Research Division of ICB, online journals,
100 books, and the internet.

101 This study has used time series data on ICB mutual funds. The performance measurement used in this study
102 is based on the 162-monthly closing price of ICB mutual funds of DSE from July 2001 to December 2014. DGEN
103 has been used as the benchmark index for the period concerned of this study. This study has considered the

104 364-days Treasury bill rate as the riskfree rate for the concerned period. The risk-free rate (Tbill rate) that has
105 been used in this study is 5.5%.

106 Necessary trading data on ICB mutual funds, DGEN, and T-bill rates have been collected from DSE Data
107 Library. All the data were analysed quantitatively; composite portfolio measure and composition analysis have
108 been carried out to gauge the performance of ICB mutual funds. This study particularly focused on risk and
109 return analysis of the mutual funds. The risk and return analysis was aided by beta coefficients measurement,
110 rsquared measurement, and standard deviations of returns of mutual funds. Based on these risk and return
111 analysis this study considered composite portfolio performance measurement analysis. The composite portfolio
112 performance measurement has been carried out by using Treynor's Index, Sharpe Ratio, and Jensen Alpha. This
113 study has further considered Fama's Decomposition analysis to identify the portfolio performance of ICB mutual
114 funds. This study has also examined portfolio composition analysis. The portfolio composition analysis has been
115 performed based on the most dominating portion of stocks (at least 50% of the portfolio) of the respective mutual
116 funds of ICB.

117 IV.

118 5 Empirical Analysis and Findings a) Analysis of Return

119 Both portfolio managers and analysts start their analysis of stocks or portfolios with the calculation of return.
120 More specifically, the arithmetic mean is the frequently used measurement tool to calculate portfolio return.
121 However, the arithmetic mean, in this case, means simply the average annual return of the mutual fund.
122 Arithmetic mean tells how well a stock performs over a period. However, Table ?? provides the monthly and
123 annualised returns of ICB mutual funds, DGEN, and DSE20. Analysis of returns of ICB mutual funds clearly
124 exhibits its outperformance compared to the market return. ICB mutual funds outperformed the market as they
125 have higher monthly and annualised return than the return of the market.

126 6 Table 1 : Monthly and Annualized Returns of ICB Mutual 127 Funds, DGEN, and DSE20 b) Analysis of Risk

128 Investment means it will certainly have some risk although the degree of risk may differ. However, the term 'risk'
129 refers to the possibility of losing principal and any earning or failure to make money from an investment. However,
130 risk can be measured by several means, but this study has considered standard deviation, beta coefficients, and
131 R-squared to gauge the risk of ICB mutual funds. These measurement techniques have been used historically
132 to measure risk and are major components of modern portfolio theory. However, Table 2 exhibits the standard
133 deviation of eight mutual funds of ICB along with DGEN and DSE20. Standard deviation is used to measure the
134 dispersion of data from its mean. This study has applied standard deviation on the annualised return to measure
135 volatility or risk. In the case of mutual funds, standard deviation tells how much return deviates from expected
136 return from the stock. Where, $\text{Cov}(R_i, R_m) = \frac{1}{T-1} \sum_{t=1}^T (R_{it} - \bar{R}_i)(R_{mt} - \bar{R}_m)$ indicates covariance between individual mutual fund's return and
137 market return while $\text{Var}(R_m) = \frac{1}{T-1} \sum_{t=1}^T (R_{mt} - \bar{R}_m)^2$ indicates variance of market return. The beta coefficients of ICB mutual funds
138 have been presented in Table 3. From this table, it could be observed that the beta coefficients of ICB mutual
139 funds are well below to the market. This means the calculated betas of considered mutual funds have low biasness
140 to the market. R-squared is another measurement that has been used in this study to represent the percentage
141 of a fund portfolio's movements that have been explained by movements in a benchmark index. DGEN has been
142 regarded as the benchmark index for ICB mutual funds. The values of R-squared usually range between 0 and
143 100 while a value between 85 and 100 for a mutual fund indicates a performance record that is closely correlated
144 to the benchmark index. However, R-squared has been measured using following formula (Bacon, 2008):

145 7 Global Journal of

$$146 \text{R-squared} = \frac{\text{Cov}(R_i, R_m)}{\text{Var}(R_m)} = \frac{\sum_{t=1}^T (R_{it} - \bar{R}_i)(R_{mt} - \bar{R}_m)}{\sum_{t=1}^T (R_{mt} - \bar{R}_m)^2}$$

147 The results of R-squared have presented in Table ?? . The table indicates that the movement of returns of ICB
148 mutual funds could not be explained by the returns from the benchmark index. In such cases, it is recommended
149 that the investors of mutual funds avoid actively managed funds with high R-squared values.

150 8 Table 4 : R-squared of ICB Mutual Funds c) Composite 151 Portfolio Performance Measures

152 The composite portfolio performance measurement has been carried out by using Treynor's Index, Sharpe Ratio,
153 and Jensen Alpha. This study further considered Fama's Decomposition analysis to identify the portfolio
154 performance of ICB mutual funds. This study has also examined portfolio composition analysis. The portfolio
155 composition analysis has been performed based on the most dominating portion of stocks (at least 50% of the
156 portfolio) of the respective mutual funds of ICB.

158 **9 . Treynor Measures**

159 Treynor measure has been the first measurement of composite portfolio performance that includes risk. The
160 objective of Treynor's measure is to find a performance measure that could be applied to all investors regardless
161 of their personal risk preference. According to Treynor's measure, there are two components of risk; risk arising
162 from the fluctuations in the market and the risk produced by the fluctuations of individual securities. However,
163 the Treynor's measure or the reward-to-volatility ratio of this study is defined by (Christopherson, Carinô, and
164 Ferson, 2009):

165 Where, refers to the average rate of return for portfolio during specified period; ??????refers to the average
166 rate of return on a risk-free investment during the specified time period; and ???? refers to the slope of the fund's
167 characteristics line during that time period. The numerator of Treynor's measure identifies the risk premium
168 while the denominator corresponds with the risk of the portfolio. Table 5 presents the Treynor's measure of ICB
169 mutual funds along with DGEN. From the above table, it can be said that the Treynor's measure of all the ICB
170 mutual funds has outperformed the market as each of the mutual funds had a value higher than the market.
171 7thICB mutual fund exhibits highest Treynor's measure.

172 **10 ii. Sharpe Ratio (Index)**

173 The Sharpe Index is known as the reward-to-variability ratio which is used to measure the excess return (i.e. risk
174 premium) per unit of total risk in an investment asset. The Sharpe Index is similar to the Treynor's measure,
175 but it considers standard deviation of the portfolio rather than the slope of the fund's characteristics line (i.e.
176 systematic risk). However, the Sharpe Index or the reward-to-variability ratio of this study is defined by (Connor,
177 Goldberg, and Korajczyk, 2010): The output of Sharpe Index has been presented in Table 6. According to the
178 figures reported in this table the Sharpe Index clearly indicates that neither of the ICB mutual funds exhibits
179 superior risk-adjusted return compared to the market. That is, neither of the ICB mutual funds has outperformed
180 the market.

181 **11 iii. Jensen Measure**

182 The Jensen measure is another measurement technique used to measure the excess return that a portfolio
183 generates over its expected return. Jensen measure is alternatively known as Jensen Alpha. However, the
184 Jensen measure or the reward-to-volatility ratio of this study is defined by: ? ? = ? ? ???? [??? ?????? + ? ?
185 (? ? ??? ? ? ? ????)]

186 Where, refers to the average rate of return for portfolio during specified time period; ??????refers to the average
187 rate of return on a risk-free investment during specified time period; ???? refers to the slope of the
188 fund's characteristics line during that time period; and ???? ? ? ? refers to the expected return on market
189 portfolio of risky assets. The output of Jensen measure has been presented in Table 7. From this table, it can be
190 observed that all the ICB mutual funds have managed to generate positive excess return adjusted for market risk.
191 Among the eight mutual funds 6th ICB mutual fund exhibits the highest value of Jensen Alpha. "Therefore,
192 it may be said that 6th ICB mutual fund is the best performing mutual fund while 1st ICB mutual fund is
193 the least performing." iv. Fama Decomposition Fama's Decomposition is used to finely breakdown the portfolio
194 performance. The overall performance of a portfolio has measured by Fama's Decomposition i.e. excess return
195 from a portfolio. Alternatively, overall performance will be equivalent to the total of portfolio risk and selectivity.
196 Here, the selectivity component represents the portion of the portfolio's actual return beyond that available to
197 an unmanaged portfolio with same systematic risk.

198 v. Fama's Decomposition of Risk Fama's Decomposition of Risk of this study is defined by: Where,
199 ?????????????? refers to the portion of portfolio's excess return due to risk taking; ???? refers to systematic
200 risk of the portfolio; ??? refers to the expected return on market portfolio of risky assets; and ?????? refers to
201 the average rate of return on a risk-free investment during the time period.

202 However, Fama's Decomposition of Risk is presented in Table 8. From this table, it can be observed that 6th
203 ICB mutual fund exhibits highest excess return due to risk taking.

204 **12 vi. Fama's Decomposition of Selectivity**

205 The portion of excess return that cannot explain the portfolio beta and market risk premium refers to selectivity.
206 However, Fama's Decomposition of Selectivity of this study is defined by: Where, ??????????????????????????
207 refers to the portion of portfolio's excess return due to superior security selection; ??????????????refers to total
208 excess return the of the portfolio; and ???, ???, and ?????? are as same as they were in Fama's Decomposition
209 of Risk.

210 However, Fama's Decomposition of Selectivity is presented in Table 9. From this table, it can be seen that 6th
211 ICB mutual fund exhibits the highest selectivity due to superior security selection. ?? ?????????? = ?? ???? ?
212 ? ? (? ? ? ???) vii. Fama's Decomposition of Diversification Fama's Decomposition of Diversification measures
213 the difference between the return that should be earned according to the CML and the return that should be
214 earned according to the SML. However, Fama's Decomposition of Diversification of this study is defined by: ??
215 ?????? ? ?????? = (? ? ? ???) (? ? ? ? ? ?)

216 Where, σ_{specific} , σ_{market} , and σ_{error} are as same as they were in Fama's Decomposition of Risk; σ_{error} refers to the
217 standard deviation of the specific mutual fund; and σ_{market} refers to the standard deviation of the market.

218 However, Fama's Decomposition of Diversification is presented in Table 10. From this table, it could be
219 observed that 6th ICB mutual fund exhibits the highest diversification. From this table, it can be observed that
220 all the mutual funds of ICB have negative Net Selectivity. From this finding, it can be inferred that the portfolio
221 managers of ICB fail to diversify away the unsystematic risk properly through their portfolio selection ability.

222 V.

223 **13 Conclusion**

224 In light of these analysis above, this study has endeavoured to understand the operations and management of
225 Investment Corporation of Bangladesh. Investment Corporation of Bangladesh (ICB) has come up to create
226 new investment opportunities by issuing mutual funds in the capital market. As a state-owned investment bank,
227 ICB played a critical role in accelerating the pace of industrialization and developing a capital vibrant market.
228 ICB helped organizations and individuals to support their equity needs through its mutual funds. Although
229 there remains much debate concerning the performance measurement of mutual funds, this study endeavoured
230 to address this issue by measuring the performance of mutual funds managed by ICB through Treynor Index,
231 Sharpe Index, Jensen Alpha, and Fama Decomposition. The findings reported in this study clearly indicate that
232 there remain several shortcomings in managing the portfolios by the portfolio managers of ICB. Although there
233 are some shortcomings but the area of operations and scope of activities have been narrowed down with the
creation of Capital Market Development Program (CMDP).^{1 2}

Figure 1: C

234

¹© 2016 Global Journals Inc. (US) 1

²©20 16 Global Journals Inc. (US)

13 CONCLUSION

1st ICB	2nd ICB	3rd ICB	4th ICB	5th ICB	6th ICB	7th ICB	8th ICB	DGEN	DSE20	Year	Volume	Issue	Version
										2016	XVI	VI	I
										Monthly Return	Annualized Return		
										() Management and Business Research			

Figure 2: C

2

Figure 3: Table 2 :

3

32

Figure 4: Table 3 :

Name	Standard deviation
1st ICB	20.69204%
2nd ICB	23.98384%
3rd ICB	22.70051%
4th ICB	22.60077%
5th ICB	22.82556%
6th ICB	33.31826%
7th ICB	23.31629%
8th ICB	24.45745%
DGEN	7.94533%
DSE20	9.95535%
Name	Beta
1 st ICB	0.290333469
2 nd ICB	0.353755095
3 rd ICB	0.257675094
4 th ICB	0.336138189
5 th ICB	0.415684339
6 th ICB	0.529488738
7 th ICB	0.254526598
8 th ICB	0.464035555
DGEN	1

Figure 5: C

Figure 6: Table 5 :

Name	R-squared			
1st ICB	8.633849%			
2nd ICB	5.927977%			
3rd ICB	4.785532%			
4th ICB	8.295044%			
5th ICB	7.956083%			
6th ICB	2.463026%			
7th ICB	2.188619%			
8th ICB	9.476383%			
	? =	? ? ???	??????	
		???	??????	
Name	Yearly Return	Risk-free Return	Beta	Treynor Mea- sure
1st ICB	11.4%	5.5%	0.29	0.20
2nd ICB	14.4%	5.5%	0.35	0.25
3rd ICB	13.6%	5.5%	0.26	0.32
4th ICB	13.6%	5.5%	0.34	0.24
5th ICB	15.9%	5.5%	0.42	0.25
6th ICB	17.6%	5.5%	0.53	0.23
7th ICB	13.6%	5.5%	0.25	0.32
8th ICB	13.9%	5.5%	0.46	0.18
DGEN	14.2%	5.5%	1	0.09

Figure 7: C

Figure 8: Table 6 :

13 CONCLUSION

7

Name	DGEN	Yearly Return	Rf	?	Jensen Alpha
1st ICB	14.19%	11.41%	5.5%	.29	0.0340
2nd ICB	14.19%	14.38%	5.5%	.35	0.0581
3rd ICB	14.19%	13.61%	5.5%	.26	0.0588
4th ICB	14.19%	13.60%	5.5%	.34	0.0519
5th ICB	14.19%	15.90%	5.5%	.42	0.0679
6th ICB	14.19%	17.65%	5.5%	.53	0.0755
7th ICB	14.19%	13.60%	5.5%	.25	0.0590
8th ICB	14.19%	13.89%	5.5%	.46	0.0436

Figure 9: Table 7 :

8

© 2016 Global Journals Inc. (US)

Figure 10: Table 8 :

9

Name	Rp	Rf	RPRisk	RPTotal	RPSelectivity
1st ICB	11.4%	5.5%	2.5%	5.9%	3.4%
2nd ICB	14.4%	5.5%	3.1%	8.9%	5.8%
3rd ICB	13.6%	5.5%	2.2%	8.1%	5.9%
4th ICB	13.6%	5.5%	2.9%	8.1%	5.2%
5th ICB	15.9%	5.5%	3.6%	10.4%	6.8%
6th ICB	17.6%	5.5%	4.6%	12.2%	7.5%
7th ICB	13.6%	5.5%	2.2%	8.1%	5.9%
8th ICB	13.9%	5.5%	4.0%	8.4%	4.4%

Figure 11: Table 9 :

10

36

Figure 12: Table 10 :

Name	Rm	Rf	?p	? ?	? ?	RPDiversification
1st ICB	14.19%	5.49%	29.03%	20.69%	7.95%	20.14%
2nd ICB	14.19%	5.49%	35.38%	23.98%	7.95%	23.19%
3rd ICB	14.19%	5.49%	25.77%	22.70%	7.95%	22.62%
4th ICB	14.19%	5.49%	33.61%	22.60%	7.95%	21.83%
5th ICB	14.19%	5.49%	41.57%	22.83%	7.95%	21.38%
6th ICB	14.19%	5.49%	52.95%	33.32%	7.95%	31.89%
7th ICB	14.19%	5.49%	25.45%	23.32%	7.95%	23.32%
8th ICB	14.19%	5.49%	46.40%	24.46%	7.95%	22.75%

viii. Fama's Decomposition of Net Selectivity
Fama's

Figure 13: C

11

Name	RPSelectivity	RPDiversification	Net Selectivity
1st ICB	3.40%	20.14%	-16.74%
2nd ICB	5.81%	23.19%	-17.39%
3rd ICB	5.88%	22.62%	-16.74%
4th ICB	5.19%	21.83%	-16.64%
5th ICB	6.79%	21.38%	-14.59%
6th ICB	7.55%	31.89%	-24.34%
7th ICB	5.90%	23.32%	-17.43%
8th ICB	4.36%	22.75%	-18.39%

Figure 14: Table 11 :

235 [Zhao ()] 'A Dynamic Model of Active Portfolio Management and Mutual Fund Performance Evaluation'. Y Zhao
236 . *SSRN Electronic Journal* 2014.

237 [Haque ()] 'Cross-Fund Subsidization in Australian Mutual Fund Families'. T Haque . *SSRN Electronic Journal*
238 2014.

239 [Tykrová ()] 'How do investment patterns of independent and captive private equity funds differ?'. T Tykrová .
240 *Evidence from Germany. Financial Markets and Portfolio Management* 2006. 20 (4) p. .

241 [Treynor and Black ()] 'How to Use Security Analysis to Improve Portfolio Selection'. J Treynor , F Black . *The*
242 *Journal of Business* 1973. 46 (1) p. 66.

243 [Investment Corporation of Bangladesh :: -ICB Mutual Fund Scheme :: [online] cb.org.bd. Available at
244 (2016)]b13 http://www.icb.org.bd/mutual_fund.php *Investment Corporation of Bangladesh ::*
245 -*ICB Mutual Fund Scheme :: [online] Icb.org.bd. Available at*, 2016. 2 May 2016.

246 [Kuhle ()] 'Manager Tenure -Real Estate Mutual Fund (REMF) Versus Equity Mutual Fund Performance'. J
247 Kuhle . *Journal of Business & Economics Research (JBER)* 2012. 11 (1) p. 17.

248 [Brown and Wu ()] 'Mutual Fund Families and Performance Evaluation'. D Brown , Y Wu . *SSRN Electronic*
249 *Journal* 2014.

250 [Brown and Wu ()] 'Mutual Fund Flows and Cross-Fund Learning within Families'. D Brown , Y Wu . *The*
251 *Journal of Finance* 2016. 71 (1) p. .

252 [Sharpe ()] 'Mutual Fund Performance'. W Sharpe . *The Journal of Business* 1966. 39 (S1) p. 119.

253 [Webster ()] 'Mutual Fund Performance and Fund Age'. D Webster . *SSRN Electronic Journal* 2014.

254 [Macisaac ()] 'Mutual Fund Performance Evaluation with Active Peer Benchmarks'. K Macisaac . *CFA Digest*
255 2014. (6) p. 44.

256 [Khedmatgozar et al. ()] 'Mutual fund performance evaluation: a value efficiency analysis approach'. H Khed-
257 matgozar , A Kazemi , P Hanafizadeh . *International Journal of Electronic Finance* 2013. 7 p. 263. (3/4)

258 [Blake and Timmermann ()] 'Mutual Fund Performance: Evidence from the UK'. D Blake , A Timmermann .
259 *Review of Finance* 1998. 2 (1) p. .

260 [Haslem ()] *Mutual funds*, J Haslem . 2003. Malden, MA: Blackwell Pub.

261 [Wu and Brown ()] 'Performance Evaluation in Mutual Fund Families'. Y Wu , D Brown . *SSRN Electronic*
262 *Journal* 2014.

263 [Fama ()] 'Portfolio Analysis in a Stable Paretian Market'. E Fama . *Management Science* 1965. 11 (3) p. .

264 [Francis and Archer ()] *Portfolio analysis*. Englewoods Cliffs, J Francis , S ; N J Archer . 1979. Prentice-Hall.

265 [Prigent ()] *Portfolio optimization and performance analysis*, J Prigent . 2007. Boca Raton: Chapman &
266 Hall/CRC.

267 [Christopherson et al. ()] *Portfolio performance measurement and benchmarking*, J Christopherson , D Carinō ,
268 W Ferson . 2009. New York: McGraw-Hill.

269 [Connor et al. ()] *Portfolio risk analysis*, G Connor , L Goldberg , R Korajczyk . 2010. Princeton: Princeton
270 University Press.

271 [Amenc and Le Sourd ()] *Portfolio theory and performance analysis*, N Amenc , V Le Sourd . 2003. Hoboken,
272 NJ: Wiley.

273 [Bacon ()] *Practical portfolio performance*, C Bacon . 2008. Chichester, England: Wiley.

274 [Angelidis et al. ()] 'Revisiting Mutual Fund Performance Evaluation'. T Angelidis , D Giamouridis , N
275 Tessaromatis . *SSRN Electronic Journal* 2014.

276 [Arora ()] *Risk-adjusted Performance Evaluation of Indian Mutual Fund Schemes. Paradigm*, K Arora . 2015. 19
277 p. .

278 [Jensen ()] 'The Performance of Mutual Funds in the Period 1945-1964'. M Jensen . *The Journal of Finance*
279 1968. 23 (2) p. 389.