

1 Investor Sentiment and its Role in Asset Pricing: An Empirical  
2 Study of the American Stock Market

3 Brahim Salem

4 Received: 16 December 2013 Accepted: 4 January 2014 Published: 15 January 2014

5

---

6 **Abstract**

7 Our paper tries to examine the relationship between investor sentiment and its effect on assets  
8 pricing. To this end, we proceeded in two ways. First, we conducted econometric tests to  
9 identify the investor sentiment measure that best reflects variations not explained by  
10 fundamentals. As part of this empirical study, we used two measures of investor sentiment  
11 based on sample surveys. The tests show that the investor sentiment index of SENTAAII is  
12 the most appropriate proxy that explains variations unexplained by fundamentals in the  
13 American market. Second, inspired by the work of DSSW (1990), we tested the impact of  
14 "noise trader" risk, both on excess returns and on their volatilities. To this end, we used a  
15 TGARCH-M model which, like Lee, Jiang and Indro (2004), to examine the relationship  
16 between market volatility, excess returns and investor sentiment. Our results on the American  
17 market show, first, that change in investor sentiment has a significant effect on excess returns.  
18 On the other hand, change in investor sentiment has a significant effect on the conditional  
19 volatility of the American stock market which causes an increase (decrease) in excess returns.

20

---

21 **Index terms**— behavioral finance; noise traders; price pressure effect; freidman effect; hold more effect; create  
22 space effect.

23 **1 Introduction**

24 neoclassical financial theory is based on investor rationality hypothesis and retains rationality as a phenomenon  
25 which influences their expectations and their investment decisions. However, behavioral finance confirms that  
26 emotions are predominant, mainly in the process of non-substantive rationality. In addition to cold, complete  
27 and decontextualized reasoning of economic theory, individuals are able to make judgments and decisions based  
28 on mental images to which they associate positive or negative feelings.

29 Finucane Alhakai, Slovic and Johnson (2000) describe this type of rapid reasoning as an "affect heuristic".  
30 Thus, behavioral finance rejects the purely theoretical vision of homo economicus that reacts in a cold and  
31 isolated manner. In financial markets, investors exhibit emotional behaviors. Investors' decisions are based  
32 on mood, which is in general an emotional state. Nevertheless, these decisions do not consider the underlying  
33 determinants of assets values that are subject of the exchange. These moods are likely to bias their judgments  
34 and, in some cases, control their actions. They influence their financial decisions by biasing their forecasts.  
35 Authors such as ??hleifer and Summers (1999), Fisher and Statman (2000), Brown and Cliff (2005) tried to  
36 explain prices evolution and their volatilities in terms of affective factors. In other words, investor sentiment  
37 plays an important role in financial markets.

38 Before analyzing the impact of investor sentiment on stock prices evolution, it is necessary to define investor  
39 sentiment.

40 The latter is defined as the investors' expectations which are not justified by the fundamentals of the value  
41 of assets subject of the exchange. This feeling reports to a set of emotional states (pride, satisfaction, joy,  
42 shame, fear, etc ...) that call for stereotyped responses. These states are behavioral phenomena that play an  
43 important role in pricing financial assets ??Mangot, 2005). Defining investor sentiment reports to describing  
44 mood (optimistic or pessimistic), independently of economic reasons. In case they are optimistic, investors show

45 an upward trend (the price is above its fundamental value), otherwise, when they are pessimistic, investors drive  
 46 prices below their fundamental value (downward trend). This behavioral phenomenon can be explained by the  
 47 fact that investor sentiment plays an important role in financial decisions and consequently in assets pricing.  
 48 Moreover, opting for this behavioral frame of analysis allows us to account for the different anomalies reported  
 49 on efficiency theory, namely excess volatility of stock prices compared to the fundamental values. Behavioral  
 50 phenomena cast on efficiency a strong counter argument. Using this analytical framework, the purpose of this  
 51 paper is to study the impact of change in "noises traders" sentiment on both future financial assets returns and  
 52 their corresponding volatilities.

## 53 2 II.

54 Role of Investor Sentiment in Capital Asset Pricing: Theoretical Foundations and Empirical Analysis a)  
 55 Theoretical Foundations i. Investor Sentiment and financial assets returns MacGregor, Slovic, Dreman and  
 56 Berry (2000) found from experience that financial decisions of individual investors directly depend on the affective  
 57 assessments they make of industries. Affective assessments of industries measured by associations of spontaneous  
 58 words and semantic differentiation collected from imposed scales (good / bad, useful / useless, boring / exciting,  
 59 etc ...) and financial evaluation estimations (expected returns, motivation to participate in a possible introduction  
 60 into the stock market) are positively and significantly correlated.

61 Similarly, among professionals, the emotional dimension may intervene in financial estimates when substantive  
 62 reasoning is difficult. According to Ganzah (2001), financial analysts base their judgments of risks and securities  
 63 returns they are not familiar with on a global attitude. When securities are very well perceived, they consider  
 64 that their returns will be high and their risk will be low. When securities are badly perceived, they expect  
 65 low returns and high risk. However, for familiar securities, perceived risk and returns tend to be positively  
 66 correlated, consistent with the neoclassical financial theory, and thus they seem to result less from a global  
 67 approach. Finucane, Alhakai, Slovic and Johnson ??2000) show that in financial markets, individuals are able  
 68 to make judgments and decisions based on mental images to which they associate positive or negative feelings.  
 69 According to these authors, the affect heuristic implies that shares of companies that have a positive image are  
 70 likely to be bought than those of companies perceived negatively. The overall positive feelings felt by investors  
 71 have them both minimize the risk associated with the investment and increase the expected returns. Thus,  
 72 company image plays a powerful role in the weighting of information that should be involved in the substantive  
 73 judgment of its value. For the newly introduced companies and those with no significant prior image, company  
 74 image and its emotional perception are perhaps the main criteria on which investors base their financial decisions.

75 Studying the role of emotions in decisionmaking dates back to the work of the neurologist Damasio (1994).  
 76 This neurologist linked individuals' decision-making process to emotions. He has shown in a study of patients  
 77 suffering brain pathologies that an emotional deficit affects the ability to make decisions. He argues that his  
 78 patients were unable to feel emotions because of damage to the frontal lobe, but their knowledge, attention,  
 79 memory, language, and their ability to solve abstract problems were not affected. Faced with simple problems,  
 80 these individuals experienced great difficulties in making decisions and were unable to make plans for the future  
 81 or choose an action. Affection had left them able to analyze the situations they faced but unable to find the  
 82 solution because of lack of emotional selection criteria and to draw conclusions by figuring out an action. The  
 83 scientific study of emotions dates back to Darwin and his work "the expression of the Emotions in Man and  
 84 the animal" published in (1872). Darwin first described emotion as something essential to the survival of the  
 85 species. Usefulness of emotions will be then taken by almost all other scientific conceptions of the phenomenon.  
 86 Emotions are considered ancestral biological reflexes that allowed species to adapt themselves and survive in  
 87 their environment. They are, at least for the most primitive of them, common to all men who live in the same  
 88 environment and are subject to the same constraints.

89 Many other authors, such as Izard or Plutchnik, offer, starting from an evolutionary point of view, a description  
 90 of emotion from a universal basis. It would be emotions that every man whatever his culture and environment  
 91 of the moment comes to feel, express towards and recognize in other men in different situations. These primary  
 92 emotions are distinguished from more built and more sophisticated emotions that would need more cognitive  
 93 elaboration. Reviewing many intellectual studies of facial expressions, Eckman was able to identify six basic  
 94 emotions used by all men: joy, sadness, anger, fear, surprise and disgust.

95 Weiner and Graham (1989) link emotions, primary or sophisticated, to life events that take an emotional value  
 96 depending on their causes, their consequences and their agents. They describe a social taxonomy of emotions,  
 97 depending on the elements being integrated in their evaluation and the resulting interactional trends.

98 Delong, Shleifer, Summers and Waldman (1990b), Lee, Shleifer and Thaler (1991), ??rown and Cliff (2003,  
 99 2005, 2006), Glushkov (2006), Ho and Huang (2008) link investors' irrational behavior in financial markets to  
 100 emotional states. Accordingly, anomalies reported on efficiency hypothesis, observed in these markets, likely  
 101 result from emotions.

102 Concrete markets are clearly not perfect markets. Indeed, a basic realism recommends considering that there  
 103 are "noise traders". It is for this reason that Delong, Shleifer, Summers and Waldmann (1990b) distinguished  
 104 between rational investors or "smart money" and irrational investors, also called "noise traders." The former  
 105 base their expectations on the determinants of the fundamental value of the traded assets. While the latter  
 106 are investors who are not fully rational and their demand for risky financial assets is affected by their beliefs

107 or emotions, which are obviously not fully justified by economic fundamentals. In this sense, the theoretical  
108 rationale for "noise traders" states that if "noise traders" are optimistic they push asset prices beyond their  
109 fundamental values. However, when they are pessimistic, the gap between price and the fundamental value of  
110 the security in question is negative, i.e. they push prices above the fundamental value.

111 In a more recent literature, several contributions of great interest have sought to test this theoretical position.  
112 They consist, essentially, in justifying assigning to behavioral variables (investor sentiment) measurable proxies,  
113 in this case, a number of economic, financial or psychological variables that can be associated with them. In  
114 this sense, Brown and Cliff (2004) define different substitutes (proxies) as measures of emotions characterizing  
115 investors' mood. Indeed, these moods are in general emotional states that likely influence financial decisions  
116 by biasing expectations. Good mood would, for example, underestimate risks and increase expected returns. It  
117 therefore encourages investors to buy and to opt for riskier securities.

118 According to Brown and Cliff (2004), there are three different proxies for measuring investor sentiment, which  
119 are: -The first is based on proxies (substitutes) that measure sentiment calculated on the basis of economic and  
120 financial variables. -The second category of proxies measures investor sentiment using explicit measures, based on  
121 sample surveys. -The third category of proxies measures investor sentiment using feelings and collective action.

122 In this paper, we are particularly interested in the second category of proxies measuring investor sentiment.

123 ii. Explicit measures of investor sentiment Explicit measures of investor sentiment are based on opinion surveys.  
124 These surveys are carried out by specialized institutions that publish a weekly index reflecting the average,  
125 optimistic or pessimistic, opinion of the surveyed individuals. These individuals may be individual and  
126 institutional investors. The opinion of these will be compiled into indices. To study the impact of these indices  
127 on the future profitability of the American S & P500, Fisher and Statman (2000) used various direct measures of  
128 sentiment. To do this, they used a method of classifying investors into three groups: -The first group consists of  
129 individual investors; -The second group consists of publishers of financial records; -The third consists of experts  
130 and financial analysts;

131 Empirical studies of the impact of investor sentiment on asset returns used sentiment indices calculated from  
132 the following sources:

133 -A sentiment index based on data from the American Association of Individual Investors (AAII). The  
134 association calculates and publishes a sentiment index created on the basis of the opinions of its members. The  
135 index so calculated is defined as the percentage of optimistic or pessimistic investors out of the total investors  
136 who expressed an opinion. Considered a proxy for the direct measurement of investor sentiment, this index  
137 is used to analyze the impact of mood of individual investors on the profitability of the S & P500 index. -A  
138 sentiment index based on data from the service company of American investments; "Investor Intelligence (II)":  
139 This company calculates and publishes a sentiment index reflecting the views of more than one hundred and forty  
140 investment advisers in the American financial markets. They transmit their optimistic or pessimistic opinions  
141 via email or mail. The sentiment index is defined as the number of optimistic views respectively pessimistic of  
142 the total number of letters received from consultants.

143 -A sentiment index based on data from Market Vanes "Mvan": the approach to calculate this index used by  
144 this agency is expressed as follows:

145 Once "Mvan" receives the opinions of individual and institutional investors via e-mail or mail, every opinion  
146 on the trend of the overall sentiment in the stock market is weighted on a scale of 0-8 where 0 and 8 represent  
147 respectively a perfect pessimistic or an optimistic sentiment.

148 Measured from opinion surveys, investor sentiment summarizes the expectations of individual investors  
149 from stock markets. The American Association of Individual Investors (AAII) issues, weekly, the results of  
150 questionnaires asking investors if they are bullish, bearish or neutral. These indicators generally have no usable  
151 information to predict future market returns, but provide insights into how individual investors make their  
152 judgments on market developments. Regression of market returns on monthly changes in investor sentiment  
153 showed a zero or a slightly negative correlation. Regression of investor changes in asset allocation on this  
154 indicator is positive, but only slightly.

155 However, investor sentiment strongly correlates with its past market returns. Fisher and Statman (2000) find  
156 for example that performance of large capitalization in the month preceding the survey accounts for 10% of the  
157 variation in investor sentiment. Fisher and Statman (2003) also show that investor sentiment changes along  
158 with consumer trust, as measured by the United State Conference Board and the University of Michigan.

159 The positive relationship between changes in investor sentiment and consumer trust, including questions on the  
160 expectations of the macroeconomic situation, given the anticipatory nature of financial markets. If information  
161 suggests future improvement or

### 162 **3 Global Journal of Management and Business Research**

163 Volume XIV Issue VI Version I Year ( ) C deterioration of the economy, this should not change market outlook,  
164 since it is supposed to, according to efficiency hypothesis, immediately transform this information onto prices.  
165 The authors consider this result as a support for the idea that investors confuse the prospects of the companies  
166 and the prospects of securities. Hefrin and Statman (1995), in fact, show that people tend to consider that  
167 the securities of "good" companies are "good" securities in total contradiction with efficiency theory and with  
168 empirical results that point to the outperformance of valued stocks, i.e. those of companies with poor prospects for

## 7 B. SELECTION OF ECONOMETRIC PROXIES FOR INVESTOR SENTIMENT

---

169 growth. Sturm (2003) reported, meanwhile, that the environment of recent markets conditions investor response  
170 to sudden price changes. When a stock suddenly drops following an information, the fall in the day of the event  
171 results in abnormal average positive returns in the following days. Positive returns are stronger in bull markets  
172 than in bear markets, suggesting that investors are watching the "mood" of the market to determine how a sharp  
173 decline is an attractive opportunity to buy.

174 These results support the hypothesis of emotional reasoning of individual investors. Past positive signals  
175 about the markets or the economy create an overall positive emotion that makes investors consider positively  
176 the future, bias their expectations which subsequently affects their investment decisions. Again, institutional  
177 investors largely seem to be immune against the intrusion of the cognitive affect as their feelings about the  
178 market show no significant correlation with consumer trust or short-term past returns.

179 Against this synthesis of the literature on the impact of investor sentiment on future returns of financial  
180 assets, we can conclude that they do not correlate with changes in investor sentiment. Most empirical studies  
181 that examined the impact of investor sentiment on future profitability did not lead to significant results. However,  
182 investor sentiment strongly correlates with past market returns. This state of mind biases their expectations and  
183 influences their investment decisions.

### 184 4 b) The Empirical Analysis

185 We will test in the context of this empirical investigation the impact of investor sentiment on future stock  
186 returns. With reference to the studies of Black (1986), De Long et al (1990), Shleifer and Vishny (1998) and  
187 Brown and Cliff (2005)), the aim is to test the importance of mood in investors' decisions and consequently in  
188 the returns-generating process. We can confirm that some decisions are taken on the basis of a rapid reasoning  
189 that integrates a global emotional evolution of opportunities. The feeling experienced by an investor towards a  
190 stock or a company reflects his/her perception of performance and associated risks.

191 If the sentiment is positive, investors tend to overestimate performance and underestimate risk and will tend  
192 to buy the security.

193 If the sentiment is negative, the investor tends to underestimate performance and overestimate risk and will  
194 tend to sell the security.

195 Before analyzing the impact of investor sentiment on financial assets returns, we will highlight the evolution of  
196 the direct proxies measuring investor sentiment on the American market, using different data sources. The latter  
197 are considered explicit measures of investor sentiment based on sample surveys. They allowed us to calculate  
198 substitutes (proxies) of the most representative of investor sentiments, because these opinions were inspired  
199 directly from the surveyed investors.

### 200 5 i. The Empirical Methodology

201 Unlike some studies that suggest ad-hoc hypotheses about the use of direct proxies measuring investor sentiment  
202 and its impact on asset returns, we will conduct empirical tests to identify the appropriate proxy reflecting  
203 investor sentiment in financial markets. According to Bandopadhyapa (2006), the aim of these empirical tests  
204 is to determine which proxy among the proxies used is the one that best reflects changes unrelated to the basic  
205 price. Our methodological approach is twofold:

206 -The first is to regress the S & P500 stock index on its lagged value. This latter is assumed to integrate  
207 all economic information explaining fluctuations of this index. -The second is to regress the residuals from the  
208 first regression, which are supposed to reflect all information unjustified by fundamentals, on each of the proxies  
209 considered in order to select the proxy that best reflects changes in market price not justified by fundamentals.

### 210 6 a. Data sources and proxies used

211 To study the impact of investor sentiment on the American stock market, we selected opinions (optimistic,  
212 pessimistic, neutral), reflecting the overall investor sentiment as recommended by the financial community.

213 We will use the sentiment proxy of the Bull-Bear deviation type, like Brown and Cliff (2005), which is expressed  
214 as follows:Neutre Bear Bull Bear Bull Bear Bull Ecart + + ? = ? (1.1)

215 This sentiment proxy is calculated on the basis of different sources of the used opinions in this study:

216 -Opinions compiled into a proxy whose source is Investor Intelligence (II). To carry out our empirical study,  
217 our database measuring sentiment of American investors covers the period from 1879 to 2013 1 .

### 218 7 b. Selection of econometric proxies for investor sentiment

219 To select among the proxies that directly measures investor sentiment, the one that best represents changes in  
220 investor sentiment, we will proceed in two stages:

221 The first is to regress the S & P500 stock index on its lagged value. The latter is assumed to integrate all  
222 economic information explaining changes in investor sentiment. The first regression is expressed as follows:

223 Regression (1) :0 1 1 t t t indice indice Résidu ? ? ? = + + (1.2)

224 -The second is to regress the residuals from the first regression, which are supposed to reflect all information  
225 not justified by fundamentals, on each of the considered proxies in order to select the best sentiment proxy that

226 best explains fluctuations of investor sentiment, i.e. residuals. This second regression is as follows:Regression (2):  
227 Residu t = t t i 0 proxy ? + ? + ? (1.3)  
228 Where;  
229 Residu t is the residual of the first regression at time (t) Proxy t is the considered sentiment proxy at time (t)  
230 The results of the significance of the parameters of the first regression on the most used American stock index,  
231 namely S & P500, over the 2001-2013 period are summarized in the following table: The results indicate that  
232 much of the fluctuation of the American S & P500 is explained by its lagged values, hence the high significance  
233 of the coefficient 1 ? .  
234 These results corroborate those of Bandopadhyaya (2006).

## 235 8 Global Journal of Management and Business Research

236 Volume XIV Issue VI Version I Year ( )

### 237 9 C

238 Our second step is to select one of the two proxies measured by the surveys the one that best explains investor  
239 sentiment, i.e., the second regression. These two proxies are calculated using monthly frequencies. They are  
240 rated AAII and II.

241 The results of this second regression are summarized in the table below: The Impact of Change in "Noises  
242 Traders" Sentiment on Both Future Returns of Financial Assets and their Corresponding Volatilities

243 Concrete markets are clearly not perfect markets. Certainly there are "noises traders", investors who react  
244 to advice from interested dealers or prophecies of "gurus", and even apply "recipes" (popular models) with no  
245 economic basis. However, there are also "reasonably rational" investors who have both a pretty good idea of  
246 the nature of the fundamentals and how these latter impact changes in prices, and who also react not always  
247 consistently with incoming new information. DeBondt and Thaler ??1985) show that most investors react to  
248 good news too optimistically and to bad news too pessimistically. Adjustment takes place more or less quickly  
249 depending on the degree of market efficiency. To put it in statistics jargon, this way of presenting these tendency  
250 constitutes the "weak form" of the efficiency hypothesis. The interaction between these two types of investors  
251 may explain the difference between price and its fundamental value, the subject of our paper. Such interaction  
252 would argue that asset prices are determined by a confrontation between rational investors and "noises traders."  
253 (De Long, Shleifer, Summers and Waldman, 1990).

254 To test this simple approach is to consider the pioneering models that face rational investors with noises  
255 traders". a) "Noise trader" risk in the model of ??elong et al (1990) The authors examine two periods (1 and 2)  
256 and two assets: a risk-free asset and a risky asset. They assume that the risk-free asset provides an interest rate  
257 noted (r), while the risky asset generates the same dividend per unit of held assets and its total offer is assumed  
258 to be equal to unity for each period. In period 2, investors are supposed to consume all their wealth. ??elong et  
259 al (1990) propose a utility function:(2 ) w e ?  $\mu$  ? = ? (2.1)

260 This utility is an increasing function of wealth w but it negatively correlates with investor risk aversion, which  
261 is defined by the parameter ? . Rational investors are fully aware of the probability distribution of the price of  
262 the risky asset in ( 1 t + ) while being in (t). The expected utility of a rational investor, i, is expressed by the  
263 following equation:2 0 1 1 ( ) ((1 )

$$] ( ) i i t t t t t E U c r P r P y ? ? ? + + = + + ? + ? (2.2)$$

264 Ignorance of noises traders of the probability distribution of the price of the risky asset results in a random  
265 variable that follows a normal identically and independently distributed law. [ ] ? unit of risky assets.2 0 1 1 ( )  
266 (1 )

267 Maximizing the past two expected utilities allows us to determine demand for risky assets of the two categories  
268 of investors.

269 The demand for risky assets of a rational investor i is given by: variances, i.e. if they are risk averse, the  
270 two categories of investors limit their requests for risky assets. b) Equilibrium price in the presence of "noises  
271 traders" Equilibrium is achieved when the total demand for the risky asset is equal to its total supply.1 1 2 (1 )  
272

273 Formally, equilibrium is given by the following relationship: 1 ) 1 ( ) ( = ? + i t n t ?  $\mu$  ?  $\mu$  (2. + ? + + = +  
274 + ) ( 2 1 1 2 1 1 (2.7)

275 The authors speculate that the variable P t is a stationary process that follows the same law from one period  
276 to another and equilibrium is stable 2 . In this analytical framework, we have: ? = + + ? + (2.9)

277 The authors point out that the gap between \* ? ? and t is a key element in the equilibrium price of the risky  
278 asset. Indeed, the only variable term in this last expression of equilibrium price is \* ? , which measures the  
279 sentiment that summarizes the expectations of "noises traders" of the price of the risky asset.

280 As long as equilibrium is stable over the period, then we have:1 1 2 2 2 t t t P p t P ? ? ? + + = =

281 This assumption allows us to determine an expression of equilibrium price which is only a function of exogenous  
282 factors and a measure of sentiment that summarizes their expectations of the price of the risky asset: -The first  
283 term of the equation indicates that in the absence of "noises traders", the price of the risky asset converges to its  
284 fundamental value which is assumed to be 1. Obviously if all investors are rational, efficiency prevails since each is  
285 able to price securities correctly, nobody deviates from the good price 3 . -The second term highlights the impact

286 of change in noise traders sentiment on the equilibrium of the risky asset or its fundamental value. The more  
287 "noises traders" are optimistic, the more they will tend to buy the risky asset. This excessive optimism is thus  
288 reflected in an increase in demand for risky assets that tends to increase the difference between market price and  
289 equilibrium or fundamental value. 3 Indeed, this result is deduced from the fact that neoclassical finance considers  
290 that there is a unique relevant estimation of the fundamental value taking into account available information.  
291 For more details see Orléan ??2005).2 2 \* \* 2 (2 ) ( ) 1 1(1 )

292 -The third term shows the systematic price movements of the fundamental value of the security in question,  
293 as demand for risky assets is affected by their beliefs or emotions. These latter are obviously not fully justified  
294 by economic fundamentals; if they are optimistic, they push prices up bringing the price of the asset beyond  
295 the fundamental value of the asset. However, if they are pessimistic the opposite is true. -The fourth term is  
296 considered by DSSW as their own contribution to their model. Indeed, the latter term measures uncertainty  
297 about changes in noises traders' sentiment, making assets riskier. When investors are risk averse, they limit  
298 their demand for risky assets, resulting, consequently, in a decrease in their price. Thus, under the action  
299 of irrational investors, the price can sustainably deviate from its fundamental value without rational investors  
300 (rational arbitrators) being able to fully bring price to its fundamental value because of price risk. In this context,  
301 a rational investor called "Smart money" means an investor who not only knows the fundamentals, but also takes  
302 into account how the various groups of investors in the market react to price changes and influence them.

303 However, uncertainty about changes in noises traders' sentiment adds an additional risk to the fundamental  
304 risk of the risky assets and consequently it increases its risk. Henceforth, when investors are risk averse, a  
305 decrease in demand for a risky asset follows, which tends to increase the deviation between market price and the  
306 fundamental value of the security in question.

307 Thus, the presence of noises traders adds an additional risk called "noise trader risk". The latter is considered  
308 endogenous with respect to the fundamental risk which is exogenous and results from a change in economic  
309 fundamentals (dividends, expected benefits

## 310 10 Global Journal of Management and Business Research

311 Volume XIV Issue VI Version I Year ( ) etc ...). The endogenous nature of "noise trader risk" results from the fact  
312 that noises traders' demand for risky financial assets is affected by their beliefs or emotions, which are obviously  
313 not fully justified by economic fundamentals.

314 The most important feature of the DSSW model is the existence of unpredictability of the feeling of "noise  
315 traders" defined as the demand for risky assets not justified by fundamentals. As arbitrators can in no way  
316 predict noises traders' reaction. The disruptive nature of these feelings adds an additional risk to the assets they  
317 exchange; a "noise trader risk" or "a sentiment risk". Indeed, noises traders' expectations of asset returns are  
318 subject to the influence of their feelings: they overestimate expected returns (compared to rational investors) in  
319 some periods and underestimate them in others. Assuming that assets are risky and that all investors are risk  
320 averse, prices can diverge from their fundamental values, which explains excess volatility of prices compared to  
321 the intrinsic value of assets. c) Price Volatility in the presence of "noises traders" According to equilibrium price  
322 equation in the presence of "noises traders" expressed by the relationship (2.10) price variance is expressed as  
323 follows:1 2 \* \* \* 2 t ( ) 2 var( ) var 1 ( ) 1 1 1 t t t P t y P Var Var r r r r r p ? ? p ? ? p ? ? p ? ? + ? ?  
324 ? ? ? ? ? = + + ? = = ? ? ? ? ? + + + ? ? ? ? ? ? (2.11) 2 2 2 ( )(1 )

325 P t

## 326 11 Var P r p ? = +

327 The latter relationship allows us to deduce that market price volatility is a function of change in "noises traders"  
328 sentiment. Thus, the higher the variability of their sentiment is, the higher the volatility of market price is. d) d)  
329 Stock returns in the presence of "noises traders" DSSW also indicate that "noises traders" can obtain higher  
330 returns than those obtained by rational investors. DSSW calculate this difference in returns as follows:

331 [ ] + + ? + = ? = ? + (2.14)

332 Substituting the last two expressions in the first, we have:2 2 2 (1 ) ( ) 2 t t n i t P r R y ? ? p ? ? + ? =  
333 ? (2.15)

334 The expected value of this expression is given by:2 \* 2 2 2 \* 2 (1 ) ( ) (1 ) ( ) 2 P n i P r r E R y ? ? ? p ? ? +  
335 + + ? = ? (2.16)

336 DSSW distinguish between four behavioral effects that may affect the difference in returns between "noises  
337 traders" and rational investors.

338 -The "Hold more" effect is expressed by the first term of equation ??2.16). This effect assumes that as "noises  
339 traders" are more optimistic, difference in returns increases. -"Price pressure" effect is expressed by the first term  
340 of the numerator. This effect highlights that as "noises traders" are more optimistic, the more their demand for  
341 risky assets increases and therefore it tends to increase their prices. Relative high prices imply, first, estimated low  
342 returns and second a low difference in returns. -The "Friedman" effect: This effect reflects the unpredictability  
343 of "noises traders" sentiment, defined as the demand for risky assets not justified by fundamentals. The more  
344 noises traders' perception of changes of prices increases, the more the variability of their sentiment increases.  
345 Here, we

---

## 346 12 Global Journal of Management and Business Research

347 Volume XIV Issue VI Version I Year ( )C

348 call for the classic argument, proposed by Friedman ??1953). which assumes that irrational investors who  
349 buy overvalued securities and sell undervalued securities are necessarily led to disappear in the market since  
350 they lose money. Thus, the "Freidman" effect plays a negative role in excess returns; the more the variability  
351 of noises traders' sentiment increases, the more their returns decrease. -The "create space" effect: this effect is  
352 measured by the denominator of the second term of the excess returns equation. If the variability of noises traders'  
353 sentiment increases, the risk resulting from the difference between the price and its fundamental value increases.  
354 The implications of this latter assumption are fundamental because risky arbitration is limited arbitration, hence  
355 taking into account investors' risk aversion. It follows then that rational arbitrators cannot eliminate pricing  
356 errors and therefore market efficiency is lost. This effect is important as long as the number of "noises traders"  
357 and the variability of their sentiment increases in the market.

358 Source: modified Lee, Jiang, and Indroo (2002) "Stock market volatility, excess return and investor sentiment"  
359 Journal of Banking and Finance, vol 26, page 2284.

360 Figure 1 : illustrates the impact of the four effects on volatility and asset returns.

361 Figure 1 : The impact of the four effects on volatility and returns of financial assets It is clear from this figure  
362 that the "Hold more" and "Price pressure" effects directly influence expected returns, while the other two effects,  
363 namely the "Freidman" effect and "create space" effects, indirectly influence financial assets returns through their  
364 influences on noise trades' misperception of the distribution of risky assets price because of their uncertainty.  
365 The disruptive nature of noise traders sentiment plays a greater role in assets pricing than knowledge of the  
366 distribution of financial asset prices. As arbitrators can in no way predict noises traders' response, this disruptive  
367 nature of that sentiment adda an additional risk to the assets they trade (sentiment risk). Indeed, noises traders'  
368 expectations of asset returns are subject to their feelings. They overestimate expected returns (compared to  
369 rational investor) in some periods and underestimate them in others. If we consider that the exchanged assets  
370 are risky and that all investors are risk averse, prices can deviate from the fundamental value of assets. The more  
371 sentiment risk is, the more the difference between the price and its intrinsic value is.

372 This theoretical analysis attests for an excess volatility of stock prices relative to fundamental values. From  
373 the two cases, namely investors are not fully rational and arbitration is risky and therefore limited ??Shleifer and  
374 Summer (1990 P: 19-20)), it follows then that the market ceases to be efficient. Under the action of irrational  
375 investors, price can substantially deviate from its fundamental value, without rational arbitrators being able to  
376 fully bring the stock price to its fundamental value because of price risk. Moreover, the Noise Trader Approach  
377 (NTA) also shows that the Friedman argument (1953) does not hold. DeLong, Shleifer, Summers and ??aldman  
378 (1990) indicate that noise traders can produce superior returns than those obtained by rational investors. Indeed,  
379 the DSSW model (1990), which has been discussed above, provides four effects to explain volatility and financial  
380 assets return. On the one hand, the "Hold more" and "Price pressure" effects that reflect the transient impact  
381 (short term) of "noise traders" on the difference in returns between them and rational arbitrators mainly results  
382 from unpredictability of "noise traders" sentiment. On the other hand, the "Freindman" and "create space" effects  
383 highlight the permanent impact (long-term) of "noise traders" on returns, caused by the impact of sentiment risk  
384 on returns volatility.

385 The NTA focuses on market configurations in which noise traders or irrational investors are simultaneously  
386 followed by a large number of investors (correlation hypothesis), to the extent that their impact The "Hold more"  
387 effect highlighted by the DSSW model assumes that if "noise traders" are optimistic in average, their demand  
388 for risky assets increases. This demand strategy increases market risk and may result in higher returns than  
389 those obtained by rational investors. However, as "noise traders" are becoming optimistic, their demand for risky  
390 assets tends to increase producing an exuberant increase in prices relative to fundamental values. Consequently,  
391 noise traders' overreaction stimulates a pressure effect on prices, the "price pressure" effect, making assets return  
392 to their intrinsic values. The "price pressure" effect plays a negative role on returns, i.e. whatever the feeling  
393 of "noise traders", it always tends to deviate the price from its fundamental value. We will try to study the  
394 impact these effects on excess returns of financial assets and volatility in the presence of "noise traders." ??SSW  
395 (1990) show that the effect of a change in "noises traders' sentiment on risky assets' excess returns depends on  
396 the extent of the" price pressure effect compared to the "hold more" effect. Indeed, if "noise traders" are too  
397 optimistic, their demand for risky assets increases and therefore they push prices up by making them deviate  
398 from their fundamental values. An increase in demand for risky assets from "noise traders' increases volatility of  
399 stock prices in the market, which increases consequently returns of these risky assets.

400 Adjustment takes place more or less rapidly depending on efficiency degree through the "price pressure" effect.  
401 This latter reduces returns of risky assets by reducing the gap between stock prices and their fundamental values.  
402 Therefore, this effect has a negative effect on excess returns. However, if "noise traders" are too pessimistic, their  
403 demand for risky assets decreases and therefore they push prices downward resulting in a gap between the current  
404 and the fundamental value of assets. This lower price generates a "Friedman" effect resulting in a decrease in  
405 excess returns. The bigger the impact of the "Friedman" effect is, the lower returns are. Thus, the Friedman  
406 effect plays a negative impact on excess returns.

407 Contrary to the "Friedman" effect, the "create space" effect has a positive effect on excess returns. Indeed,  
408 the "NTA" focuses on market configurations in which irrational behaviors are simultaneously hedged by a large

409 number of investors (correlation hypothesis), to the extent that their impact on pricing is real and does not vanish  
410 mechanically unlike under uncorrelated errors configuration. This approach strongly disputes the neoclassical  
411 claim that makes of arbitration an economic power able to block price deviations caused by the presence of  
412 "noise traders". Moreover, the approach notes that current arbitration, as it is actually practiced on a concrete  
413 market, is fundamentally different from theoretical arbitration considered by neoclassical theory according to  
414 which arbitration is risky and therefore limited as investors are risk averse. This approach thus shows that the  
415 "Friedman" effect or Friedman's argument does not hold. It is the "create space" effect that prevails over the  
416 "Friedman" effect and therefore irrational investors can generate greater returns than those obtained by rational  
417 investors (DSSW: 1990). e) Impact of "noises traders" on asset prices evolution In this section, our interest is to  
418 test the impact of "noises traders" sentiment on excess returns and their volatilities using the model of Lee Jiang  
419 and Indro ??2002). Changes in asset prices are the result of the interaction of the four different effects, namely,  
420 on the one hand, the "Hold more" and "Price pressure" effects, reflecting investor sentiment effect (optimistic  
421 or pessimistic), have a direct impact on excess returns. On the other hand, the "Friedman" and "create space"  
422 effects reflect change in investor sentiment caused by uncertainty about the distribution of changes of financial  
423 assets prices. This variability in "noises trader" sentiment affects market conditional volatility and therefore leads  
424 to abnormal returns, which in turn affect excess returns.

425 We test the four effects of "noise traders" on the American market. The test will focus on the S & P500 index  
426 over the period 2001-2013, expressed in monthly frequencies.

427 Excess returns are calculated by a three-month Treasury bond also expressed in monthly frequencies. The  
428 data were collected from the Datastream database.

429 In this empirical study, we chose Mvan sentiment index, unlike Lee, Jiang and Indro (2002) who used in an  
430 ad-hoc way the sentiment index of Investor Intelligence (II). Our choice is motivated by the results we obtained  
431 (see: 1.2.1.2).

### 432 13 i. Empirical methodology of the test of the four effects of 433 noise traders

434 In modern finance, one of the ideas that is widely used to estimate volatility of stock returns is to provide a  
435 measure of attached risk. However, this measure is loosely interpreted as long-term volatility, as it seems to be  
436 determined by a variety of economic fundamentals of a particular security and is always assumed to be constant  
437 throughout the study period. Various studies have shown that return series of financial assets exhibit some  
438 heteroscedasticity, which means they are assigned a random value whose variance varies over time. Specifically,  
439 as noted by Mandelbort (1963): "... large changes tend to be followed by large changes whatever the sign and  
440 small changes tend to be followed by small changes ..." ??Mandelbrot 1963, p: 418). Moreover, several authors  
441 have highlighted non-normality and thus the leptokurtic character of unconditional return distributions. These  
442 latter have indeed thicker tails and sharper peaks than

## 443 14 Global Journal of Management and Business Research

444 Volume XIV Issue VI Version I Year ( ) C the normal distribution (see for example Fama, 1965). Indeed, these  
445 properties of returns distributions have important implications on the evolution of financial assets. The model  
446 of time-varying volatility originally introduced by Engle (1982) and then generalized by Bollerslev (1986) was  
447 developed to describe returns distributions and thus provide a means to forecast historical volatility of returns.

448 In standard GARCH models, positive and negative shocks of the same magnitude are assumed to have a  
449 systematic effect on conditional volatility. However, various studies have indicated that most financial series are  
450 asymmetric, in the sense that negative changes in asset prices are followed by more marked increases in volatility  
451 than positive changes of the same magnitude. Many extensions have been made to univariate GARCH processes.  
452 We limit ourselves here to present a major extension, namely the threshold GARCH-M model (TGARCH-M)  
453 developed by Engle, ??ilien and Robbins (1987). This model allows us, on the one hand, to measure the effect of  
454 change in time of market conditional volatility of excess returns and, on the other hand, to capture the extreme  
455 of conditional volatility of the American market.

456 -. Y Fig. 1 shows changes in returns of the SP500 index over the period 2001-2013. It indicates that returns  
457 are highly volatile. We also note that there are volatility clusters. Therefore, volatility changes over time. This  
458 observation suggests that we can adopt an ARCH process, especially TGARCH. To take account of the ARCH  
459 effect, we present conditional variance equation along with the mean equation Consider the following model: The  
460 model is as follows:  $2, 0 1, 2 2 2, 0 1, 1 1, 1 2, 1 i t f t i t i t i t i t R d ? ? ? ? ? ? ? ? ? ?$   
461  $? ? ? ? ? ? = + + ? ? = + + + ? ? (2.0 i t t s i d s i n o n ? ? ? < ? = ? ?$  A negative shock  $0, < t i ?$  has  
462 an impact  $(1 ? ? + on t$

463  $? ,$  while a positive shock influences  $t ? ,$  through  $1 ?$  only. If the estimation of  $? is statistically significant,$   
464 we conclude that a leverage effect exists. Then, if  $, a negative or a positive shock impacts asymmetrically$   
465 conditional volatility. Indeed, Christie (1982), ??lack (1976) and ??hwert (1989) show that a decrease in asset  
466 prices generates more volatility than an increase of the same magnitude. To this end, we assume that  $? s would be$   
467 positive indicating asymmetry in conditional volatility of the American market. In other words, positive changes  
468 in asset prices are followed by more marked increases in volatility than negative changes of the same magnitude.

The TGARCH-M model is estimated by the likelihood method in the same way as a standard GARCH model. The estimation results of the M-TGARCH model are summarized in the table above. It follows from the above table that a TGARCH-M effect, indicates, on the one hand, a statistically significant impact of conditional variance on excess returns. The parameter  $\gamma_1$  that measures risk premium is statistically significant: The higher conditional volatility of the American market is, the higher excess returns of the S & P500 are. On the other hand, the parameter  $\gamma_2$  indicates that asymmetry is positive and statistically significant. This parameter is positive, indicating that a positive shock increases more volatility than a negative shock of the same magnitude. Then, we conclude that a leverage effect exists. To understand this phenomenon, ??lack (1976) indicates that a decline in stock prices compared to bonds of an indebted company leads to an increase in leverage, i.e. indebtedness asymmetrically influences conditional volatility of stock markets.

In line with ??lack (1976), ??elson (1991) shows that a new market information also asymmetrically influences market conditional volatility. Glosten and Runkle (1993) indicate that misinformation has more momentum in the market as good news.

482 ii. Test of the four effects of "noise trader" on excess returns and conditional volatility of the American market  
483 To test the four effects of "noise traders" on excess returns and conditional volatility of the American market,  
484 we introduce lagged changes in investor sentiment in both the excess returns model to measure the "Hold more"  
485 and the "Price pressure" effects and in the conditional variance model to test the "Friedman" and "create space"  
486 effects. Like Lee, Jiung and Indro (2002), we use two measures of sentiment risk to test changes in investor  
487 sentiment both at the level of excess returns of financial assets of the American market and their conditional  
488 volatilities.

489 The impact of change in irrational investors sentiment

490 15 ? = ?

491 in percentage also on excess returns and conditional volatility will be estimated by a second irrational model;  
 492 "noises traders" (TGARCH-M (2)). Then, the TGARCH-M model in the presence of "noise traders" is expressed  
 493 as follows:  $\hat{\sigma}_t^2 = \alpha_0 + \alpha_1 \hat{\sigma}_{t-1}^2 + \alpha_2 \hat{\epsilon}_{t-1}^2 + \alpha_3 \hat{\epsilon}_{t-1} \hat{\sigma}_{t-1}$  in the conditional variance process reflects the effect of change in "noises traders" sentiment  
 494 on the conditional volatility of the American market and describes the interaction between the "Friedman" and  
 495 the "create space" effects. Thus, the resulting effect on excess returns can be positive or negative depending on  
 496 which of the two effects prevails. $\hat{\sigma}_t^2 = \alpha_0 + \alpha_1 \hat{\sigma}_{t-1}^2 + \alpha_2 \hat{\epsilon}_{t-1}^2 + \alpha_3 \hat{\epsilon}_{t-1} \hat{\sigma}_{t-1}$   
 497  $\hat{\sigma}_t^2 = \alpha_0 + \alpha_1 \hat{\sigma}_{t-1}^2 + \alpha_2 \hat{\epsilon}_{t-1}^2 + \alpha_3 \hat{\epsilon}_{t-1} \hat{\sigma}_{t-1}$   $= \alpha_0 + \alpha_1 \hat{\sigma}_{t-1}^2 + \alpha_2 \hat{\epsilon}_{t-1}^2 + \alpha_3 \hat{\epsilon}_{t-1} \hat{\sigma}_{t-1}$

498 To this end, abnormal or excess returns will be even higher (lower) when the "create space" effect is more  
 499 (less) than the "Friedman" Effect. Given the uncertainty of noises traders, conditional volatility varies with  
 500 the change in their sentiment (optimistic or pessimistic) and many studies, particularly that of Kahneman and  
 501 Tversky (1982), pointed out that individual behavior towards risk frequently deviates from rationality. The  
 502 results of the impact of sentiment risk on both excess returns of financial assets in the American market and  
 503 on their conditional volatilities are summarized in the table below. The test results of model ( 2) indicate that  
 504 absolute variance has improved statistical significance of the parameters . From these two positions, namely  
 505 "investors are not fully rational and arbitration is risky and therefore limited" (Shleifer and Summers (1990) p:  
 506 [19][20], it follows then that the market continues to be efficient. Under the action of irrational investors, price  
 507 can sustainably deviate from its fundamental value, without rational arbitrators being able to fully bring price  
 508 to its fundamental value because of price risk. Furthermore, NTA also indicates that the Friedman argument  
 509 does not hold. Noise traders' strategies can generate higher returns than those obtained by rational investors  
 510 (DeLong, Shleifer, Summers and Waldam (1990)) yields.

511 Consequently, neither arbitration nor selection can eliminate irrational investors, "noise traders".

512 16 Global Journal of Management and Business Research

513 Volume XIV Issue VI Version I Year ( ) Indeed, arbitration seems to be unable to absorb all demand shocks.  
514 Unpredictability of investor sentiment may limit willingness of arbitrators to bring price to equilibrium. Not  
515 knowing that "noises traders" will react, arbitrators will perceive these potential interventions as risky and  
516 limit their funds. For example, suppose that in a given period "noise traders" are very optimistic and they  
517 inflate prices. The rational investor, convinced that the market is heavily overvalued, adopts the theoretically  
518 appropriate strategy to sell overvalued assets. However, at the end of the contract, it is possible that "noise  
519 traders" are more optimistic and drive a much larger increase in prices, which will result in a significant loss to  
520 arbitrators. Conversely, if "noise traders" are pessimistic about future returns causing a significant fall in prices,  
521 the arbitrator buys undervalued stocks anticipating their future increase. Similarly, the investor bears risk upon  
522 selling the stocks. "noise traders" are more pessimistic and thus cause a much greater decrease in prices. The  
523 disruptive nature of "noises traders" sentiment limits the willingness of arbitrators to act against them, therefore  
524 prices can deviate significantly from their fundamental values. This adds an additional risk to the market, known  
525 as "noise trader" risk or sentiment risk. Furthermore, NTA shows that the Friedman argument ??1953), which  
526 assumes that irrational investors who purchase overvalued securities and sell undervalued securities are necessarily  
527 led to disappear in the market as they lose money, does not hold.

528 These results support studies indicating that investor sentiment is an important factor in financial markets  
529 ??Lee, Shleifer and Thaler (1991), ??hiller (2000) and ??hleifer (2000)).  
530 IV.

## 531 17 Conclusion

532 The approach of "noise traders" claims that stock prices are fixed through a dynamic relationship between them  
533 and rational arbitrators (Shiller (1984), ??hleifer and Summers (1999)). In other words, investor sentiment is  
534 involved in the process of generating returns. According to proponents of behavioral finance, in addition to  
535 fundamental innovations and macroeconomic variables, investor sentiment may induce co-movement of prices.  
536 Indeed, arbitration seems to be unable to absorb all demand shocks. Unpredictability of individual investor  
537 sentiment can limit the willingness of arbitrators to bring price to equilibrium. Not knowing that "noises traders"  
538 will react, the arbitrator will perceive these potential interventions as risky and limit their funding in response  
539 to irrational investors. The disruptive nature of "noises traders" sentiment limits the willingness of arbitrators to  
540 act against them, therefore price may deviate significantly from its fundamental value. This adds an additional  
541 risk to the market, known as "noise trader risk" or sentiment risk.

542 In this paper, we reported an empirical study in two parts:

543 -In the first part, we conducted econometric tests to identify the sentiment measure that best reflects variations  
544 not explained by fundamentals. As part of this empirical study, we used two measures of sentiment, based on  
545 sample surveys. The tests show that the sentiment index of SENTAAII is the most appropriate proxy that  
546 explains variations unexplained by fundamentals in the American market.

547 -In the second part, inspired by the work of DSSW (1990), we tested the impact of "noise trader" risk, both  
548 on excess returns and on their volatilities. To this end, we used a TGARCH-M model which, like Lee, Jiang and  
549 Indro (2004), examined the relationship between market volatility, excess returns and investor sentiment.

550 Our results on the American market show, first, that change in investor sentiment has a significant effect  
551 on excess returns (the results of model ( 1)). On the other hand, change in sentiment has a significant effect  
552 on conditional volatility of the American stock market that causes an increase (decrease) in excess returns (the  
553 results of model ( 2)).

554 Following these results, we can conclude that the presence of "noises traders" in the market helps explain  
555 excess volatility of stock prices relative to their fundamental values, as unpredictability of investor sentiment  
556 may limit the willingness of arbitrators to bring prices back to equilibrium. Not knowing that noises traders will  
557 react, the arbitrator will perceive their potential interventions as risky and limit their funding in response to  
558 irrational investors, leading to a persistent gap between prices and their fundamental values. These results gave  
559 birth to alternative theories of prices co-movement. They claim that asset prices are determined by a dynamic  
560 relationship between noises traders and rational arbitrators (Shiller (1984), ??hleifer and Summers (1999)). In  
561 other words, investor sentiment is involved in the process of generating returns.

## 562 18 Global Journal of Management and Business Research

563 Volume XIV Issue VI Version I Year ( ) 1 2 3 4

---

<sup>1</sup>© 2014 Global Journals Inc. (US)

<sup>2</sup>Investor Sentiment and its Role in Asset Pricing: An Empirical Study of the American Stock Market

<sup>3</sup>Extracted opinions from surveys conducted by UBS and Gallup are eliminated from our database because  
they do cover only a short period (since 1994) by contrast to other data that exist since 1989 © 2014 Global  
Journals Inc. (US)

<sup>4</sup>see DSSW page 711



Figure 1: 1 .

*[Note: This institution has been collecting opinions since 1964 of more than 140 consultants on market trend. Opinions are divided into three categories (optimistic, pessimistic, neutral), Global Journal of Management and Business Research Volume XIV Issue VI Version I Year ( )]*

Figure 2:

1

|                                              |             |                              |
|----------------------------------------------|-------------|------------------------------|
| indice                                       | t =         | ? 0 + ? 1 indicte 1 + Residu |
| ?                                            |             |                              |
| Dependent Variable: SP500_                   |             |                              |
| Method: Least Squares                        |             |                              |
| Date: 05/29/14 Time: 00:08                   |             |                              |
| Sample (adjusted): 2001M03 2013M12           |             |                              |
| Included observations: 154 after adjustments |             |                              |
| Variable                                     | Coefficient | Std. Error                   |
| C                                            | 0.002247    | 0.003576                     |
| SP500_(-1)                                   | 0.190828    | 0.078401                     |
| R-squared                                    | 0.037513    | Mean dependent var           |
| Adjusted R-squared                           | 0.031181    | S.D. dependent var           |
| S.E. of regression                           | 0.044340    | Akaike info criterion        |
| Sum squared resid                            | 0.298834    | Schwarz criterion            |
| Log likelihood                               | 262.3347    | Hannan-Quinn criter.         |
| F-statistic                                  | 5.924288    | Durbin-Watson stat           |
| Prob(F-statistic)                            | 0.016093    |                              |

Figure 3: Table 1 :

---

2

Residu t = ? 0 ? SENTII ? + t  
+  
1

Dependent Variable: RES\_SP500

Method: Least Squares

Date: 05/29/14 Time: 00:15

Sample (adjusted): 2001M03 2013M02

Included observations: 144 after adjustments

| Variable           | Coefficient | Std. Error            | t-Statistic  | Prob.    |
|--------------------|-------------|-----------------------|--------------|----------|
| C                  | -0.011740   | 0.006366              | -0.0672      |          |
| SENT_II            | 0.000551    | 0.000265              | 2.0798910393 |          |
| R-squared          | 0.029564    | Mean dependent var    | -            | 0.000979 |
| Adjusted R-squared | 0.022730    | S.D. dependent var    | 0.045017     |          |
| S.E. of regression | 0.044503    | Akaike info criterion | -            | 3.372744 |
| Sum squared resid  | 0.281229    | Schwarz criterion     | -            | 3.331497 |
| Log likelihood     | 244.8376    | Hannan-Quinn criter.  | -            | 3.355984 |
| F-statistic        | 4.325947    | Durbin-Watson stat    | 2.101589     |          |
| Prob(F-statistic)  | 0.039333    |                       |              |          |

Figure 4: Table 2 :

3

Year  
64  
Volume  
XIV  
Issue  
VI  
Ver-  
sion  
I  
)  
( Residu t =

? 0 ? SENTAAII  
+ ?  
1 +

Global Journal of Management and Business Research

Dependent Variable: RES\_SP500 Method: Least Squares Date: 05/29/14 Time: 00:15 Sample (ad)

The tables (above) indicate that the sentiment proxy AAII is the most appropriate proxy that explains the variations that are not explained by fundamentals, in our case investor sentiment.

Figure 5: Table 3 :

( ? ? + ) t p + While the demand for risky assets of noises i t t t t r P r P y ? + + = (2.4) traders is equal to: At 1 1 2 (1) 2 ( ) t n t t t t p r P r P y ? ? + ? + + ? + = (2.5) +

Year  
Volume XIV Issue VI Ver-  
sion I  
( ) C  
Global Journal of Man-  
agement and Business Re-  
search

Figure 6:

---

**4**

Year  
70  
Volume XIV Issue VI  
Version I  
)  
(  
Global Journal of Management and Business Research 0 4 - - 0.0010.2 Series: Y Sample 2001M01 2013M12 Observations  
155 Mean -0.002604 Median -0.007854 Maximum  
0.260201 Minimum -0.218689 Std. Dev. 0.075935  
Skewness 0.340067 Kurtosis 4.476299 Jarque-Bera  
17.06318 Probability 0.000197  
28

Figure 7: Table 4 :

**5**

| F-statistic                                 | 35.87808    | Prob. F(1,152)        | 0.0000      |
|---------------------------------------------|-------------|-----------------------|-------------|
| Obs*R-squared                               | 29.40856    | Prob. Chi-Square(1)   | 0.0000      |
| Test Equation:                              |             |                       |             |
| Dependent Variable: RESID^2                 |             |                       |             |
| Method: Least Squares                       |             |                       |             |
| Date: 09/04/14 Time: 18:14                  |             |                       |             |
| Sample (adjusted): 2001M03 2013M12          |             |                       |             |
| Included observations: 154 afteradjustments |             |                       |             |
| Variable                                    | Coefficient | Std. Error            | t-Statistic |
| C                                           | 0.003064    | 0.000845              | 3.628553    |
| RESID^2(-1)                                 | 0.415989    | 0.069449              | 5.989831    |
| R-squared                                   | 0.190965    | Meandependent var     | 0.005463    |
| Adjusted R-squared                          | 0.185642    | S.D. dependent var    | 0.010225    |
| S.E. of regression                          | 0.009227    | Akaike info criterion | -           |
|                                             |             |                       | 6.520459    |
| Sumsquaredresid                             | 0.012941    | Schwarz criterion     | -           |
|                                             |             |                       | 6.481018    |
| Log likelihood                              | 504.0753    | Hannan-Quinn criter.  | -           |
|                                             |             |                       | 6.504438    |
| F-statistic                                 | 35.87808    | Durbin-Watson stat    | 2.129433    |
| Prob(F-statistic)                           | 0.000000    |                       |             |

Figure 8: Table 5 :

6

Dependent Variable: SP500\_  
 Method: ML -ARCH (Marquardt) -Normal distribution  
 Date: 06/30/14 Time: 00:20  
 Sample (adjusted): 2001M02 2013M12  
 Included observations: 155 after adjustments  
 Convergence achieved after 39 iterations  
 Presample variance: backcast (parameter = 0.7)

Figure 9: Table 6 :

7

on their volatilities

| Relative Variance                                                  | Coefficient | Std. Error            | z-Statistic | Prob.    |
|--------------------------------------------------------------------|-------------|-----------------------|-------------|----------|
| Dependent Variable: Y                                              |             |                       |             |          |
| Method: ML -ARCH (Marquardt) -Normal distribution                  |             |                       |             |          |
| Date: 09/06/14 Time: 01:10                                         |             |                       |             |          |
| Sample (adjusted): 2001M06 2013M03                                 |             |                       |             |          |
| Included observations: 142 afteradjustments                        |             |                       |             |          |
| Convergence achievedafter 38 iterations                            |             |                       |             |          |
| Presample variance: backcast (parameter = 0.7)                     |             |                       |             |          |
| GARCH = C(4) + C(5)*RESID(-1)^2 + C(6)*RESID(-1)^2*(RESID(-1)<0) + |             |                       |             |          |
| C(7)*GARCH(-1) + C(8)*DDS(-1) + C(9)*DDS1(-1)                      |             |                       |             |          |
| Variable                                                           | Coefficient | Std. Error            | z-Statistic | Prob.    |
| GARCH                                                              | -11.76425   | 3.434040              | 3.425775    | 0.0006   |
| C                                                                  | 0.053960    | 0.012690              | 4.252075    | 0.0000   |
| TRSAAII                                                            | -0.001241   | 0.000550              | 2.257126    | 0.0240   |
| Variance Equation                                                  |             |                       |             |          |
| C                                                                  | 0.003416    | 0.000973              | 0.501072    | 0.0005   |
| RESID(-1)^2                                                        | 0.455470    | 0.198160              | 2.298492    | 0.0215   |
| RESID(-1)^2*(RESID(-1)<0)                                          | -0.658225   | 0.197928              | 3.325573    | 0.0009   |
| GARCH(-1)                                                          | 0.117264    | 0.214190              | 0.547462    | 0.5841   |
| DDS(-1)                                                            | -4.88E-08   | 7.88E- 07             | -           | 0.9506   |
| DDS1(-1)                                                           | -4.04E-06   | 1.14E- 05             | -           | 0.7223   |
| R-squared                                                          | 0.212934    | Meandependent var     | -           | 0.002129 |
| Adjusted R-squared                                                 | 0.201610    | S.D. dependent var    | -           | 0.069661 |
| S.E. of regression                                                 | 0.062244    | Akaike info criterion | -           | 2.616619 |

Figure 10: Table 7 :

on their volatilities

Absolute variance

Dependent Variable: Y

Method: ML -ARCH (Marquardt) -Normal distribution

Date: 09/06/14 Time: 01:18

Sample (adjusted): 2001M03 2013M03

Included observations: 145 afteradjustments

Convergence achieved after 37 iterations

Presample variance: backcast (parameter = 0.7)

GARCH = C(4) + C(5)\*RESID(-1)^2 + C(6)\*RESID(-1)^2\*(RESID(-1)<0) +

C(7)\*GARCH(-1) + C(8)\*VVS(-1) + C(9)\*VVS1(-1)

| Variable                  | Coefficient | Std. Error            | z-Statistic       | Prob.    |
|---------------------------|-------------|-----------------------|-------------------|----------|
| GARCH                     | -6.982040   | 2.048395              | 3.408543          | 0.0007   |
| C                         | 0.036720    | 0.008622              | 4.2587100.0000    |          |
| VSAII                     | 0.000309    | 0.000383              | 3.8067770.4198    |          |
|                           |             |                       | Variance Equation |          |
| C                         | 0.003225    | 0.000923              | 3.5047180.0005    |          |
| RESID(-1)^2               | 0.293085    | 0.148169              | 9.9780450.0479    |          |
| RESID(-1)^2*(RESID(-1)<0) | -0.245045   | 0.210941              | 0.2454            |          |
|                           |             |                       | 1.161672          |          |
| GARCH(-1)                 | 0.102470    | 0.170391              | 0.6013830.5476    |          |
| VVS(-1)                   | 5.74E-06    | 4.96E- 06             | 1.1567950.2474    |          |
| VVS1(-1)                  | -3.85E-06   | 1.72E- 06             | 0.0253            |          |
|                           |             |                       | 2.236848          |          |
| R-squared                 | 0.078607    | Meandependent var     | -                 | 0.000702 |
| Adjusted R-squared        | 0.065630    | S.D. dependent var    |                   | 0.075456 |
| S.E. of regression        | 0.072938    | Akaike info criterion | -                 | 2.512341 |
| Sumsquaredresid           | 0.755432    | Schwarz criterion     | -                 | 2.327578 |
| Log likelihood            | 191.1447    | Hannan-Quinn criter.  | -                 | 2.437266 |
| Durbin-Watson stat        | 2.140342    |                       |                   |          |

Figure 11: Table 8 :



---

564 [Bandopadhyaya ()] Bandopadhyaya . *Measures of Investor Sentiment: Who Wins the Horse Race?, Working*  
565 *paper*, 2006. University of Massachusetts Boston

566 [Shefrin and Statman ()] 'Behavioral capital asset pricing theory'. H Shefrin , M Statman . *Journal of Finance*  
567 *and Quantitative Analysis* 1994. 29 p. .

568 [Daniel et al. ()] Kahneman Daniel , P Slovic , Amos Et , Tversky . *Judgment Under Uncertainty Heuristics and*  
569 *Biases*, (Londres) 1982. Cambridge University Press.

570 [Damasio ()] *Descartes error: emotion, reason, and the human brain*, R Damasio . 1994. New York: Putman.

571 [Macgregor et al. ()] 'Imagery, affect, and financial judgment'. D G Macgregor , P Slovic , D Dreman , M Berry  
572 . *Journal of Psychology and Financial Markets* 2000. 1 (2) p. .

573 [Sturm ()] 'Investor confidence and returns following large one-day price changes'. R Sturm . *Journal of Behavioral*  
574 *Finance* 2003. 4 (4) p. .

575 [Brown and Cliff ()] 'Investor Sentiment and asset valuation'. G W Brown , T C Cliff . *Journal of business* 2005.  
576 78 p. .

577 [Fisher and Statman (2000)] 'Investor Sentiment and stock returns'. K L Fisher , M Statman . *Financial Analyst*  
578 *journal* 2000. March/April 2000. p. .

579 [Brown and Cliff ()] 'Investor sentiment and the near-term stock market'. G Brown , T C Cliff . *Journal of*  
580 *Empirical Finance* 2004. 11 p. .

581 [Ho ()] *Investor sentiment as conditioning information in asset pricing*, Huang Ho . 2008. (working paper)

582 [Ganzach ()] 'Judging risk and return of financial assets'. Y Ganzach . *Organizational Behavior and Human*  
583 *Decision Processes* 2001. 83 p. .

584 [Black ()] 'Noise'. F Black . *Journal of Finance* 1986. 41 p. .

585 [De Long et al. ()] 'Positive Feedback Investment Strategies and Destabilizing Rational Speculation'. Bradford J  
586 Andrei De Long , Lawrence H Shleifer , Robert J Summers , Waldmann . *The Journal of Finance* 1990b. 2  
587 p. .

588 [Delong et al. ()] 'Positive feedback investment strategies and destabilizing rational speculation'. J B Delong , A  
589 Shleifer , L Summers , R J Waldmann . *Journal of Finance* 1990b. 45 p. .

590 [Lee and Jiang ()] 'Stock market volatility, excess returns, and the role of investor sentiment'. W Y Lee , C Jiang  
591 , X , Lndro , D . *Journal of banking & Finance* 2002. 26 p. .

592 [Shiller ()] 'Stock prices and social dynamics'. R J Shiller . *The Brookings Papers on Economic Activity*, 1984. 2  
593 p. .

594 [Finucane et al. ()] 'The affect heuristic in judgments of risks and benefits'. M L Finucane , A Alhakami , P  
595 Slovic , S M Et Johnson . *Journal of Behavioral Decision Baking* 2000. 13 p. .

596 [Shleifer and Vishny ()] 'The Limits of Arbitration'. A Shleifer , R Vishny . *Journal of Finance* 1997. 52 p. .

597 [Shleifer and Summers ()] 'The Noise Trader Approach to Finance'. A Shleifer , L Summers , H . *Journal of*  
598 *Economic Perspectives* 1990. 4 (2) p. .

599 [Shleifler and Summers ()] 'The noise trader approach to Finance'. A Shleifler , L H Summers . *Journal of*  
600 *Economic Perspectives* 1999. 4.

601 [Mandelbrot ()] 'The variation of certain speculative prices'. B Mandelbrot . *journal of Business* 1963. 36 p. .

602 [Weiner and Graham ()] 'Understanding the motivational role of affect life-span research from an attributional  
603 perspective'. B Weiner , S Graham . *Cognition and Emotion* 1989. 3 (4) p. .