

1 Dynamic Behavior in Customers' Switching and Market Share 2 Analysis: The Markov Model Perspectives

3 Dr. Amue Gonewa John¹

4 ¹ University of Port Harcourt Nigeria.

5 *Received: 23 July 2012 Accepted: 22 August 2012 Published: 2 September 2012*

6

7 **Abstract**

8 Customer's loyalty results in long-run market share of a firm, which is a base for retaining
9 loyal customers. Marketing strategies pertaining to customer retention and customer
10 acquisition are examined for five major global mobile service providers in Nigeria. Here we
11 proposed a mathematical model to explore firm market share analysis, customer retention and
12 switching rate. The customer retention rate and switching rate would be assumed in the
13 model to be constant from time to time because of our underlying assumption that our
14 Markov models have a finite chain and with stationary transition probabilities. How these
15 probability values will be used to compute each firm's market share is demonstrated. Finally,
16 we used the Markov model to design marketing strategy to raise the customer retention rate
17 and the rate of gaining competitor's customers.

18

19 **Index terms**— Customers acquisition, customer retention, customer loyalty, switching rate, market share.

20 **1 Introduction**

21 Since the publication of the Markov model in marketing literature, research on the modeling of customer loyalty,
22 customer switching and market share analysis has resulted in a body of literature consisting of several articles,
23 books and other publications. Attempt have been made to reexamine the conceptual assumptions and estimated
24 issues underlying the Markov models that evolves repeated trials or in sequential time periods in which the state
25 of the system changes from one period or stage to the other in the next succeeding time period or stage. The
26 authors evaluate these developments and conclude with an agenda to make Markov models theoretically more
27 sound and practically effective and realistic. The Markov model has been defined as an analytical tool that uses
28 the probability matrix of the current period's state n , together with the transition probability matrix to describe
29 and predict the future movement of the same variables.

30 Since publication of the Markov model in 1905, research on the modeling of the probabilities of future
31 occurrence in marketing has resulted in an extensive literature. However, a plethora of studies has contribution
32 to our understanding of the conceptual assumptions underlying Markov models. Modeling of predicting future
33 movement of the same variable has been highly applicable to the problems from a wide range of areas like account
34 receivable analysis queuing problem analysis, inventory analysis etc.

35 Model proposed to deal with this phenomenon, can be studied at any level of depth and sophistication.
36 Fortunately, the major mathematical requirements are just that you know how to perform basic matrix
37 manipulations. In this paper we present some modification in the model. We also advance the model to design
38 marketing strategy.

39 **2 II.**

40 **3 The Mathematical Model**

41 To facilitate the application of Markov model to market share analysis, each firm's market share in the current
42 period, which would be represented as $??$, (n) and is often defined as the percentage or probability of all the

4 III. APPLICATION OF MARKOV MODEL TO

43 customers in the whole GSM market buying from each service provider, must first be obtained from historical
44 record information in the form of relative frequency data. Also, each service providers customer retention rate
45 together with each firm's customer switching rate are to be estimated from a survey of the past buying behavior
46 of the customers. Each firm's customer switching in rate which is defined as the tendency or probability of a
47 competing firm's customer in the present period to start purchase from a particular new service provider in the
48 next period. The customer retention rate and switching rate would be assumed in the mathematical model to
49 be constant from period to period because of our underlying assumption that our Markov models have a finite
50 chain and with stationary transition probabilities.

51 In Nigeria, there are five GSM service providers -MTN, Globalcom, Airtel, Etisalat and M-tel. a market survey
52 in year one revealed that the five service providers has a customer base of 500,000, 400,000, 300,000, 200,000 and
53 100,000 respectively. After one year (i.e. in year 2) a second market survey showed that MTN retained 400,000
54 of its customers, lost 40,000 to Globalcom, 30,000 to Airtel, 20,000 to Etisalat and 10,000 to M-tel; Globalcom
55 retained 200,000 of its customers, lost 100,000 to MTN, lost 50,000 to Airtel, 30,000 to Etisalst and 20,000 to
56 M-tel; Airtel retained 200,000 of its customers, lost 40,000 to MTN, lost 30,000 to Globalcom, lost 20,000 to
57 Etisalat and 10,000 to M-tel; M-tel retained 60,000 of its customers, lost 10,000 to MTN, 10,000 to Globalcom,
58 10,000 to Airtel and 10,000 to Etisalat. From this market survey, we can predict the market share for each GSM
59 service providers in the successive years (i.e. year 2).

60 4 III. Application of Markov Model to

61 Market Share Analysis of the Five Gsm Service Providers in Nigeria

62 A table that shows the movement or switching of customers among the five GSM service providers will be
63 constructed as a prelude to computing both each service provider's state probability for the current month "n"
64 which will be designated as ??; (n), and the transition probabilities.

65 Note that the year which the sales of the service toke place triggers the transition in the Markov system and
66 hence they are the trials of the Markov process (Bergous, 2008 The total number of the customers retained,
67 lost and gained will be calculated as a percentage or proportion of the total number of customers who originally
68 patronized each service providers from the beginning (i.e. from year 1). We can interpret table 2 using the MTN's
69 row, it is found out that of the 500,000 customers that originally patronized MTN service in the beginning (in
70 year one), by year 2, 80% of them were retained, 8% of them were lost to Globalcom service, 6% to Airtel, 4%
71 were lost to Etisalat and 2% of them were lost to M-tel. Also, using MTN's column to interprets table 2, it can
72 be explained that by year 2, 80% of the total customers that MTN had in year1, were retained, 25% of the total
73 customers that Globalcom had in year 1, were gained by MTN, 13% of the total customers that Airtel had in
74 year 1, were gained by MTN; 5% and 10% of the total customers that Etisalat and M-tel had respectively in year
75 1, were gained by MTN.

76 This interpretation can be generalized that for each firm in a column, the probabilities appearing under it,
77 show either the percentage of that firm's initial customer retained or the percentage of other firms' initial ear
78 customers gained by it. Whereas for each firm in the row, the probabilities appearing against it show either the
79 percentage of that firm's initial customers retained or the percentage of that firm's initial.

80 Recall that the customer base of five service providers at the end of 2011 stand at:

81 The state probability vector will be expressed as:

82 With the information provided in table 1 and 2 Therefore the market share for MTN, GLO, Airtel, Etisalat
83 and M-tel at the end of 2013 will be 39.15%, 17.25%, 21.75% 11.40% and 10.45% respectively.

84 From the mathematical model, we observed that by 2013, the market share of MTN increased from 33.3% to
85 39.15%, the market share of GLO decreased from 26.7 to 17.25%, the market share of Airtel slightly increased
86 from 20% to 21.75% that of Etisalat decreased from 13.3% to 11.40%. Again, if the market share calculation is
87 repeatedly done for subsequent future years, this trend, which depends principally on the nature of the matrix
88 of transition probabilities, will continue until at steady state (or equilibrium) condition when the relative market
89 shares will no more change from year to year. At equilibrium, consecutive steps possess identical characteristics,
90 for any step of the Markov chain, the state probability vector is given by $SV(k) = Q(k) =$

91 Where $q_1 + q_2 + q_3 + q_4 + q_5 = 1$

92 At equilibrium, we have $PmQ = Q$ and $Pm x Q = Q$ that is $q_1 q_2 q_3 q_4 q_5$

93 Dynamic Behavior in Customers' Switching and Market Share Analysis: The Markov Model Perspectives
94 Global Journal of Management and Business Research Volume XII Issue XVII Version I 2 2012 ear Multiplying
95 and expressing in the algebraic form, we have $0.80q_1 + 0.25q_2 + 0.13q_3 + 0.05q_4 + 0.10q_5 = q_1 0.08q_1 +$
96 $0.50q_2 + 0.10 q_3 + 0.10q_4 + 0.10q_5 = q_2 0.06q_1 + 0.125q_2 + 0.670q_3 + 0.15q_4 + 0.10q_5 = q_3 0.04q_1$
97 $+ 0.075q_2 + 0.067q_3 + 0.5q_4 + 0.10q_5 = q_4 0.02 q_1 + 0.05 q_2 + 0.033q_3 + 0.2 q_4 + 0.60q_5 = q_5$

98 Recall that: $q_1 + q_2 + q_3 + q_4 + q_5 = 1$ Therefore, $q_1 = 1 - q_2 - q_3 - q_4 - q_5$ $q_2 = 1 - q_1 q_3 - q_4 - q_5$
99 $5 q_3 = 1 - q_1 - q_2 - q_4 - q_5 q_4 = 1 - q_1 - q_2 - q_3 - q_5 q_5 = 1 - q_1 - q_2 - q_3 - q_4$ $0.80q_1 + 0.25q_2 + 0.13q_3$
100 $+ 0.05q_4 + 0.10q_5 = 1q_2 - q_3 - q_4 - q_5$ —————Equation 1 $0.08q_1 + 0.50q_2 + 0.10 q_3 + 0.10q_4 + 0.10q_5 =$
101 $1 - q_1 - q_3 - q_4 - q_5$ —————Equation ?? $0.06q_1 + 0.125q_2 + 0.670q_3 + 0.15q_4 + 0.10q_5 = 1q_1 - q_2 - q_3 - q_4 - q_5$
102 —————Equation 3 $0.04q_1 + 0.075q_2 + 0.067q_3 + 0.5q_4 + 0.10q_5 = 1q_1 - q_2 - q_3 - q_4 - q_5$ —————Equation 4 0.02
103 $q_1 + 0.05 q_2 + 0.033q_3 + 0.2 q_4 + 0.60q_5 = 1 - q_1 - q_2 - q_3 - q_4$ —————Equation ??Collecting like terms
104 together we have; $0.80q_1 + 0.25q_2 + 0.13q_3 + 0.05q_4 + 0.10q_5 = 1.08q_1 + 0.50q_2 + 0.10 q_3 + 0.10q_5$

105 $4 + 0.10q_5 = 1$ $0.06q_1 + 0.125q_2 + 0.670q_3 + 0.15q_4 + 0.10q_5 = 1$ $0.04q_1 + 0.075q_2 + 0.067q_3 + 0.5q_5$
106 $4 + 0.10q_5 = 1$ $0.02q_1 + 0.05q_2 + 0.033q_3 + 0.2q_4 + 0.60q_5 = 1$ Solving for q_1, q_2, q_3, q_4 , and q_5 , by
107 row operations, we have: $q_2 q_3 q_4 q_5 q_1 q_2 q_3 q_4 q_5 = 0.80$ 1.25 At the final tableau, we can calculate
108 the market share for q_5 . Therefore; $0.01q_5 = 0.001q_5 = 0.01$ $0.001q_5 = 0.1$
109 We can as well compute the market share at $q_4 0.05q_4 + -0.03q_5 = 0.001 0.05q_4 + -0.03(0.1) = 0.001 0.05q_4$
110 $4 - 0.003 = 0.001 0.05q_4 = 0.001 + 0.003 0.05q_4 = 0.004 0.05q_4 = 0.004 0.05R$ 5 - 0.1R $4 q_1 q_2 q_3 q_4 q_5 = 0$. At
111 $q_3 = 0.42q_3 + (-0.63q_4)$ + 0.03q_3 = 0.03 0.42q_3 - 0.0504 + 0.003 = 0.03 0.42q_3 = 0.0774 $q_3 = 0.42 0.0774$
112 = 0.1840 At $q_2 = -0.95q_2 + -0.34q_3 + -0.25q_4 + -0.30q_5 = -0.28 - 0.95q_3 - 0.0626 + 0.02 - 0.03 = -0.28 - 0.95q_2$
113 = $-0.28 + 0.0626 + 0.03 + 0.03 - 0.95q_2 = -0.28 + 0.1126 - 0.95q_2 = -0.28 + 0.1674$ $q_2 = -0.95 - 0.1674$ $q_2 = 0.1762$
114

115 Recall that; $q_1 + q_2 + q_3 + q_4 + q_5 = 1$ $q_1 + 0.1762 + 0.1840 + 0.08 + 0.1 = 1$ $q_1 + 0.5402 = 1$ $q_1 = 0.4598$.

117 Therefore, at equilibrium or steady state condition, the market share of the five GSM service providers in
118 Nigeria at the long-run are 46%, 18%, 18%, 8%, and 10% respectively. Note that the steady state, state probability
119 (market share) for all service providers depend solely on the nature of the transition probabilities and not on
120 initial state probabilities (market share) for each of the five service providers.

121 Clearly, MTN is still leading the GSM market in Nigeria and their greatest challengers is Globalcom but there
122 is a high rate of customer defections in Airtel, Etisalat and M-tel, which is affecting their market shares. We
123 now discuss appropriate marketing strategies that will reduce customers switching and retention through Markov
124 model in the next section.

125 IV.

126 5 Markov Model for Designing Marketing Strategy

127 For us to use Markov model to design marketing strategy, there must be an evidence of customer switching and
128 reduction in market share. Recall in the last paragraph that the market share of Airtel at the beginning was 20%
129 at the second year, it increased slightly to 21.75% but at equilibrium, it reduced to 18%, in a worst case scenario,
130 if the nature of the transition probabilities is such that a particular competitor loses customers to others and
131 gain no customers from other competitors, at equilibrium, that competitor could be driven out of business. For
132 the above, no matter the control a firm has in the industry regarding market share, the nature of the matrix of
133 transition probabilities can make the firm to be driven out of business in the long run (at equilibrium).

134 Under this situation, the two options available to use are either to use the retention strategy or the both
135 strategy simultaneously. For instance, Airtel succeeds in its use of retention strategy to raise its customer's
136 retention rate from 67% to 80% while its rate of gaining its competitor's customers remain constant at 10%, the
137 new matrix of transition probabilities will be; $0.80q_1 0.20q_2 = q_1 0.10q_1 0.90q_2 = q_2 0.80q_1 + 0.20q_2 =$
138 $1-q_2 0.10q_1 + 0.90q_2 = 1-q_1 0.80q_1 + 1.2q_2 = 1.1q_1 + 0.90q_2 = 1.80 0.20 0.10 0.90q_1 q_2 = q_1 q_2$
139 $0.80 1.2 1 1.1 0.90 1 0.8R 2 - 1.1R 1 0.80 1.2 1 0 - 0.6 - 0.3$

140 The steady state market share for Airtel from this new matrix transition probabilities is 50% which implies
141 that the increase Airtel's customer retention rate from 67% to 80% alone, increased its equilibrium market share
142 from 18% to 50%.

143 On the other hand, if Airtel successfully utilizes an acquisition strategy to raise its rate of gaining its
144 competitor's customers from 10% to 20% while its customer retention rate remains constant at 67%, the new
145 matrix of transition probabilities will be;

146 The steady state market share for Airtel from this new matrix is 56% which implies that only an increase of
147 Airtel rate of gaining its competitor customers from 10% to 20% increased its equilibrium market share from 18%
148 to 56%.

149 Finally, if both retention strategy and customer acquisition strategy are put in place for the organization
150 simultaneously in a form that Airtel's retention rate increase from 67% to 80% and its rate of gaining its
151 competitor's customer increased from 10% to 20% the new matrix of transition probability will be;

152 This new matrix of transitional probability from the combined marketing strategy results in a steady state
153 market share of 100% for Airtel compared to 18% when neither strategy was used.

154 V.

155 6 Conclusion

156 In this paper, we attempted to offer some understanding of strategies to be used in raising customer retention
157 and customer acquisition strategy. We advanced the appropriate marketing strategy using the Markov model to
158 design the needed strategy when firm, has decreasing market share and high customer switching. However, not
159 all the firms has a decreasing market share but what we are saying is that, firm's which has control of the market
160 share of the industry will also need an appropriate marketing strategy to remain in business. Firms required
161 retention strategy in which attempts are made to retain a large percentage of old customers. For example,
162 MTN, GLO, Airtel, Etisalat and M-tel. The five GSM service providers need retention strategy by providing
163 superior service quality, by giving a rebate and by giving discount to customers who purchase in repeated periods.
164 Another type of marketing strategy needed to increase market share is the acquisition strategy in which attempts

6 CONCLUSION

165 are made to take customers way from other competitors. The most appropriate way to do this is through all
166 forms of effective advertising. When firms successfully utilizes an acquisition strategy to raise its rate of gaining
167 its competitor's customers while its customers retention rate remains constant, then new matrix of transition
168 probability will increase its equilibrium market share.

169 Finally, the model can be used to design both retention strategy and customer acquisition strategy
170 simultaneously in a form that retention rate increase and its rate of gaining its competitor's customer increases.
171 The new matrix of transitional probabilities from the combined marketing strategy will result in a steady state
market share which will lead to reduction in customer switching. ¹

Figure 1: Dynamic

172

1

Firms	Year one customer standing	Customers numbers	percentage %	Year two customer standing			
				MTN	GLO	Airtel	Etisalat
MTN	500,000	33.3	400,000	40,000	30,000	20,000	10,000
GLO	400,000	26.7	100,000	200,000	50,000	30,000	20,000
Airtel	300,000	20.0	40,000	30,000	200,000	20,000	10,000
Etisalat	200,000	13.3	10,000	20,000	30,000	100,000	40,000
M-tel	100,000	6.7	10,000	10,000	10,000	10,000	60,000
	1,500,000	100	560,000	300,000		320,000	180,000
							140,000

[Note: Customer's switching in each service firm in year 2]

Figure 2: Table 1 :

2

Proportion of Customers Retained, Gained and Lost					
Firms	MTN	GLO	Airtel	Etisalat	M-tel
MTN	400,000/500,00	40,000/500,000	30,000/500,000	20,000/500,000	10,000/500,000
	$0 = 0.8$	$= 0.08$	$= 0.06$	$= 0.04$	$= 0.02$
GLO	100,000/400,00	200,000/400,00	50,000/400,000	30,000/400,000	20,000/400,000
	$0 = 0.25$	$0 = 0.50$	$= 0.125$	$= 0.075$	$= 0.05$
Airtel	40,000/300,000	30,000/300,000	200,000/300,00	20,000/300,000	10,000/300,000
	$= 0.13$	$= 0.1$	$0 = 0.67$	$= 0.067$	$= 0.033$
Etisalat	10,000/400,000	20,000/200,000	30,000/200,000	100,000/200,000	40,000/200,000
	$= 0.05$	$= 0.1$	$= 0.15$	$0 = 0.5$	$= 0.2$
M-tel	10,000/100,000	10,000/100,000	10,000/400,000	10,000/100,000	60,000/100,000
	$= 0.1$	$= 0.1$	$= 0.1$	$= 0.1$	$= 0.6$

Figure 3: Table 2 :

2012

2

and Business Research Volume XII Issue XVII Version I
Global Journal of Management

Figure 4:

6 CONCLUSION

Market share for MTN by 2013 will be:

$$37.3(0.8) + 20 (0.25) + 21.3(0.13) + 12.1 (0.05) + 9.3(0.10) \\ 500,000 29.84 + 5 + 2.769 + 0.609 + 0.93$$

$$\text{Customer 2011} = \quad \quad \quad 400,000 \quad 300,000 \quad \text{MTN Market share for GLO:} = 39.15 \quad \text{Cus}$$

$$200,000 \quad 37.3 (0.08) + 20 (0.50) + 21.3 (0.10) + 12.1 (0.10) + 9.3 (0.10) \quad 720,000 \\ 400,000 \quad 2.984 + 10 + 2.13 + 1.21 + 0.93 \\ \text{GLO} \quad = \\ 17.25$$

Market share for Airtel:

$$37.3 (0.06) + 20 (0.125) + 21.3 (0.670) + 12.1 (0.15) + 9.3 (0.10) \\ 33.3 \quad 2.238 + 2.5 + 14.271 + 1.815 + 0.93 \quad \text{Airtel} = 21.75$$

$$\text{sv 2011} = \quad \quad \quad 26.7 \quad 20.0 \quad \text{Market share for Etisalat: sv 2012} =$$

$$13.3 \quad 6.7 \quad 37.3 (0.04) + 20 (0.075) + 21.3 (0.067) + 12.1 (0.5) + 9.3 (0.10) \quad 12.1 \quad 9.3 \quad 12.1 \quad 1.492 + 1.5 + 1.42$$

Market share for M-tel by 2013:

$$37.3 (0.02) + 20 (0.05) + 21.3 (0.033) + 12.1 (0.2) + 9.3 (0.60) \\ 0.7609 + 1 + 0.7029 + 2.42 + 5.58$$

400,000	100,000	40,000	M-tel = 10.45	10,000
TM40,000	30,000	200,000	30,000	20,000
=				30,000
20,000	30,000	20,000	100,000	
10,000	20,000	10,000	40,000	
PM =	0.80	0.25	0.13	0.05
	0.08	0.06	0.50	0.125
			0.670	0.15
			0.10	0.10
			0.05	0.10

$$0.04 \quad 0.075 \quad 0.067 \quad 0.5$$

$$0.02 \quad 0.05 \quad 0.033 \quad 0.2$$

$$\text{SV(2013)} = \text{PM} \times \text{SV(2012)}$$

$$0.80 \quad 0.25 \quad 0.13 \quad 0.05 \quad 0.10$$

$$0.08 \quad 0.50 \quad 0.10 \quad 0.10 \quad 0.10$$

=	0.06	0.125	0.670	0.15	0.10
	0.04	0.075	0.067	0.5	0.10
	0.02	0.05		0.033	0.2

Figure 5:

173 [Buffa] , E Buffa .

174 [Anderson et al. ()] , D R Anderson , D J Sweeney , T A William . 1992.

175 [Anderson et al. ()] *An Introduction to Management Science: Quantitative Approaches to Decision Making 6th ed*, D Anderson , D J Sweeney , T A William . 1991. St Pual MN: West Publishing Company.

177 [Joydip et al. ()] *Dynamical Behavior in an Innovation Diffusion Marketing Model with Thinker Class of Population*, D Joydip , T Mani , S Poonam . 2010.

179 [Data ()] *Integrated Materials Management: A Functional Approach*, A K Data . 1986. new Delhi: Prentice-hall. of India Private Limited

181 [Ngaage ()] *Introductory Quantitative Techniques for Management Decision 1st ed*, Horizon Concepts 80 Ikwere Road, K T Ngaage . 2007. Port Harcourt Nigeria.

183 [Hermanson] *Programmed Learning Aid for Production and Operations management*, R H Hermanson . Homewood, Illonois: Learning Systems Company (a division of Richard D. Irwin Inc. p. 1973.

185 [Barry ()] *Quantitative Analysis for Management 8th ed*, Barry . 2003. Prentice hall. Upper Seddle River, New Jersy

187 [Mac'odo ()] *Quantitative and Statistical Analysis for Business Decision 1st ed*, D Mac'odo . 1997. Port Harcourt: Linnet Paint Publications.

189 [Markov ()] 'Sequence of Experiment on the Principles of Brownie Motion'. A A Markov . *Quantitative Analysis for Management* 1905. 8 p. .

191 [Bergous ()] 'The Trial of the'. R A Bergous . *Markov Process Journal of Management And Business Studies* 2008. 11 (2) p. .