

1 Corporate Governance, Roles, and Future Directions: New 2 Venture Creation of Autonomous and Dependent Entrepreneurial 3 Scientists

Dr. William P Racine¹

¹ Malone University

Received: 16 December 2011 Accepted: 3 January 2012 Published: 15 January 2012

8 Abstract

9 A conflict in scientific entrepreneurship has arisen over the propriety of scientific
10 advancements, business governance, and the resulting commercialization of
11 scientific innovations. Some research indicates that the commercialization activities display
12 asymmetric convergence because industry appears to have a more influential role in the
13 exploitation of these innovations. Yet, the research does not differentiate the types of
14 commercialization activities and assumes that all forays into scientific entrepreneurship are
15 comparable. This research aims to explore these contentions and differentiate two groups of
16 scientific entrepreneurs based on their lived experience. This research indicates that, while the
17 essence of the experience is the same, these groups of scientific entrepreneurs have different
18 experiences based on their roles and the conflicts related thereto, witness varying control
19 issues over the fate and delivery of their innovation due to the influences of investor relations,
20 and exhibit differing visions for the future based on their experience. This research provides
21 evidence and advances the theory that scientific entrepreneurs need to be segregated by the
22 influence of their investor relationships because of the differences these relationships impose on
23 their lived experience.

Index terms—

26 1 I. INTRODUCTION

he mental image of white-smocked scientists experimenting in stuffy laboratories in pursuit of academic knowledge has become obsolete. Their image once inspired Maslow (1954) to consign their studies to that of identifying, "... impulses to beauty, symmetry, and possibly to simplicity, completion, and order?" (p.

³⁰ 2 2). Marx believed that their contribution

31 The new image is mired in the socio-economic realities of the modern day. The context of merely Author
32 : Ph. D.5376 Fulton Drive, NW Canton, Ohio 44718(330) 494-0905 / (330) 494-1650. E-mail : fax
33 williamracine@ymail.com advancing the body of scientific knowledge has now been enjoined with the dynamic
34 economic environment as well as the motivations of the contemporary government-industrial complex that
35 seeks innovation, technological advancement, and profits. For the scientist, these realities require, "a shift
36 in orientation from purely academic pursuits to entrepreneurial activity" ??Etzkowitz, Webster, & Healey, 1998,
37 p. 13). This suggests a contamination, of sorts, to the theoretically untainted academic motivations of early
38 scientific discoveries.

39 Many academic scientists, specifically those interested in the pursuit of scientific knowledge and advancements,
40 decry this enjoinder. The concept of "pure" science has historically meant that ties with industry were outside

5 III. THEORETICAL REVIEW

41 of the scientific norm (Etzkowitz, Webster, & Healey, 1998). With the advancements in high-profit potential
42 industries such as polymer science, biotechnology, and nanotechnology, industry has sought to exploit these
43 technological advancements for economic gain. Yet, many scientists believe as ??rimsky (2004, p. x) does that,
44 scientists must remain, ”?free and independent investigators? (They) have the responsibility to their discipline
45 and to the public to pursue the best science.” It is with this rich and complex debate that the exploration of the
46 lived experience of scientific entrepreneurs begins.

47 3 II. BACKGROUND

48 Some scientists elect to change their career path and engage in entrepreneurial endeavors to promote their
49 innovation, exploit their intellectual capital, or address a need in the marketplace. In so doing, the scientific
50 entrepreneur recognizes a transformative change in their role and realizes a shift in perspective via a planned
51 attempt to revolutionize their lifeworld. These perspectives are demonstrated in the various conflicts of governance
52 and control, disparities in the commercialization of the innovation, and issues related to the future direction
53 of their venture. The extant literature seems to imply that all scientists-turnedentrepreneurs share similar
54 experiences in the new venture creation experience. No attempt has been made T .

55 4 Global Journal of Management and Business Research Vol- 56 ume XII Issue I Version I

57 Abstractover the propriety of scientific advancements, business governance, and the resulting commercialization
58 of scientific innovations. Some research indicates that the commercialization activities display asymmetric
59 convergence because industry appears to have a more influential role in the exploitation of these innovations.
60 Yet, the research does not differentiate the types of commercialization activities and assumes that all forays into
61 scientific entrepreneurship are comparable. This research aims to explore these contentions and differentiate two
62 groups of scientific entrepreneurs based on their lived experience. This research indicates that, while the essence
63 of the experience is the same, these groups of scientific entrepreneurs have different experiences based on their
64 roles and the conflicts related thereto, witness varying control issues over the fate and delivery of their innovation
65 due to the influences of investor relations, and exhibit differing visions for the future based on their experience.
66 This research provides evidence and advances the theory that scientific entrepreneurs need to be segregated by
67 the influence of their investor relationships because of the differences these relationships impose on their lived
68 experience.

69 was greater. He remarked that the future of capitalism resides in science because the production of industry
70 depends on it. ??1845, trans. 1947). In the modern day, advancement of knowledge while concomitantly
71 participating in the conversion of new knowledge into a commercialization activity , A scientist today is, ”the
72 person who can make contributions to marketable products” (Krimsky a period. 2004, p. 1).

73 from its antecedent stereotype departure This is a significant to differentiate autonomous scientific en-
74 trepreneurs (those with primary controlling interest in the venture) and dependent scientific entrepreneurs
75 (those with limited control over the commercialization of their ventures). This differentiation is mired in the
76 interrelationships between the entrepreneur and investor and between entrepreneur and the economic realities of
77 the business world.

78 A growing body of research suggests the modern socio-economic reality coupled with the intervention of
79 government and industry lure scientific entrepreneurs toward profits that can contaminate the purity of their
80 work (Etzkowitz, Webster, & Healey, 1998). This research explores this view in the context of the lived experience
81 of scientific entrepreneurs that autonomously create their own new ventures versus those that do so under the
82 influence of outside investors. The aim is to discover how these pressures are understood to be significant for
83 autonomous scientific ventures versus more financially dependent scientific ventures. This research evaluates
84 the commercialization experience to explore how scientific entrepreneurs appreciate the realities of role conflict,
85 business governance, and direction of the fate of the innovation which are the primary indices affecting scientific
86 commercialization.

87 The reflective appraisal of their experience is intended to answer the research question -How does the scientist-
88 turned-entrepreneur perceive the lifeworld changes brought about by the new venture creation experience in terms
89 of role conflicts, corporate governance, and their vision for the future? A better understanding of the scientific
90 entrepreneur’s experience is needed information to advance the discourse and address the primary issues of
91 scientific commercialization. This research aims to explore the phenomenon of the scientist-turned-entrepreneur
92 by differentiating the commercialization experience of autonomous scientific entrepreneurs in contrast to those
93 that experienced the new venture creation process through investor-led vehicles.

94 5 III. THEORETICAL REVIEW

95 The research attempts to differentiate the entrepreneurial scientist has had its share of difficulties because of the
96 disparities between academic scientists and those scientists desiring commercial endeavors. Scientists that deliver,
97 ”?commercial outcomes tend to be rather different than those who are accustomed to producing academic ones”
98 (Ambos, Makela, Birkinshaw, and D’Este, 2008, p. 1424). Many attempts to classify their behaviors, traits, and

99 their commercialization activities have come under scrutiny by researchers aspiring to understand the scientific
100 new venture creation process. The unique alternatives available to the university scientist inhibited much of
101 the research into scientific entrepreneurship. These alternatives included fellowships, scholarships, grants, and
102 endowments that were designed to keep the scientist at the university (Samsom, 1990). These alternatives
103 provided a significant filtering mechanism in exporting innovations beyond the walls of the university (Danielson,
104 1960) and hindered the transmission of scientific discoveries to industry (Bell & McNamara, 1991;Litvak & Maule,
105 1973). These scientists were able to receive many of the benefits while avoiding some of the difficulties inherent
106 in an external entrepreneurial venture.

107 Later, social science researchers, sought to differentiate scientific entrepreneurs from other types of en-
108 trepreneurs. Samsom (1990) confirmed that scientists have fundamental cultural and behavioral differences that
109 influence the new venture creation process. Likewise, Bell and McNamara (1991) suggested that scientist-lead
110 entrepreneurial ventures outside of the university setting usually involve management insufficiency, monetary
111 problems, and technology flaws in getting a product to market. Commercialization of scientific entrepreneurial
112 endeavors usually include a potential decrease in innovation (Cotgrove & Box, 1970;Kenney, 1986;Etzkowitz,
113 Webster, & Healey, 1998), ineffectual business management (Ahn, 2008), inability to grow (Kenney, 1986),
114 and collaboration inefficiencies (Niemi, 1993). These researchers suggest that there are specific business related
115 problems that influence scientific endeavors and affect their ability to sustain start-up activities.

116 However, the socio-economic conditions of the contemporary era are believed to expedite some of the
117 commercialization activities. Scientific entrepreneurs have advantages over other entrepreneurs. "They are closer
118 to the future than the rest of us. That proximity to the cutting edge gives them the opportunity to start
119 businesses based on science that are truly breakthrough in nature" (Gaebler Ventures, 2009). Whether they have
120 an advantage or not, the salient aspect of their experience is that exploitation of scientific discoveries by industry
121 in the modern day poses unique difficulties for the scientist but may also provide certain benefits. Researchers
122 then focused their collective attention on the commercialization activities.

123 **6 b) The Scientist In Commercialization Activities**

124 training to be of secondary importance and behave Moreover, organizational design in scientist-lead organizations
125 is less reflective of progressive practices than other executive-lead organizations (Moss-Kanter, 1989). Venture
126 financing, marketing, and planning, are also less developed than in the typical organization considered secondary,
127 are seen as increasingly important including allocation of resources, accounting, and management expertise
128 (Samsom, 1990). Given this, exploration of the post-product introduction, while minimally researched, suggests
129 that these scientific entrepreneurs begin to recognize all functions as important to the success and vitality of the
130 new venture creation process.

131 The commercialization process imparts a new perspective for the scientist. The role of the scientist changes
132 as does the duties and responsibilities for the survival and success of the new venture. The existing research
133 confirms the requirement for the continued involvement of the scientist (Zucker, 1998;Stuart & Ding, 2006;Phillips
134 & Zuckerman, 2001). The scientist and the innovation cannot be divorced, at least initially, as easily as might
135 occur in other forms of entrepreneurship. The scientist frequently embodies the product, not unlike a brand
136 provides meaning, and cannot easily be changed.

137 Beyond a mere involvement, Zucker (1998) suggested that scientists must maintain a key role in both the
138 development of the technology as well as the commercialization of the venture. To some in academic circles, this
139 represents a loss to the scientific community. Yet, Zucker (1998) disagrees. Scientists publish more, an indicator of
140 their continued scientific success, during the creation of their entrepreneurial venture than before or after (Zucker,
141 1998). This begets other discoveries thereby advancing knowledge and permitting further entrepreneurial venture
142 creation.

143 The importance of these functions is demonstrated in contemporary society where a further emphasis is placed
144 on the importance of the development of sustainable businesses that foster advancement. The role of scientific
145 innovation and the ventures that arise from it imbricates the very fabric of society based on the importance
146 of scientific advancement, social improvement, and the demand for improved goods and services (Vinck, 2010).
147 Because of this, the myriad of issues that surround the industrygovernment-university interaction have gained
148 increasing importance to foster growth and satiate the needs of a more knowledge-based society ??Etzkowitz,
149 2008). This has lead to shift in the consideration of, not of how much knowledge can be gained but rather, how
150 demands of contemporary society and the influence this wields are at odds with the Mertonian scientific norms
151 that were an integral part of the historic scientific culture.

152 Collaboration between science and industry is a necessity because of the relationship between fundamental
153 discoveries and product development, production, and marketing. (Greenberg, 2007). Nevertheless, this
154 collaboration, at times, is not without its costs. Scientists go through a transition period where their expectations
155 about science are revised to meet company needs, or, if unable to return to academia, they are fated to the
156 disillusionment of role incompatibility (Cotgrove Box 1970). This role incongruity is rooted in the disparity
157 between their scientific culture and that of the competitive marketplace.

158 The competitive marketplace deposits other strains on the scientist. Discoveries develop slowly where value
159 is thought to be low and if value high, competing opportunities can lead to appropriation (Zucker, Darby &
160 Armstrong, 2002). The corporate world that stresses profits is therefore pitted against the scientific motivation

6 B) THE SCIENTIST IN COMMERCIALIZATION ACTIVITIES

161 for knowledge-creation and information building. This creates angst because contemporary science is complex
162 and is often, "financed by, a society that worships money and profits Exporting science to industry requires the
163 involvement of both parties. However, this equation is not balanced. ??leinman and Vallas (2001) refer to this
164 as asymmetrical convergence because industry appears to have a more influential role in the equation. "It is said
165 today that the scientist who can turn ideas into profits are the ones that are contributing to a better world"
166 (Krimsky, 2004, accordingly (Litvak & Maule, 1973;Sindermann, 1982). (Litvak & Maule, 1973). Issues that
167 were initially much money can be made (Molle & Djarova, 2009). The c) Exporting Science To Industry and
168 celebrates personal wealth " ??Greenberg, 2007, p. 5).

169 This suggests that autonomy and control over the research and commercialization process is a battleground for
170 those desirous of engaging in a new scientific endeavor. ??acker and Webster (1996, p. 427) note that this creates
171 disharmony because, "scientists must exist between or in two distinct social worlds to manage the rewards that
172 academic and patent cultures carry." Beyond these cultural discrepancies, the direction and furtherance of the
173 research oftentimes are a cause for unease to the scientist. "Concerns over autonomy and control as innovations
174 transition from academia to industry pose a significant threat to academic research" (Kleinman & Vallas, 2004).
175 This implies that the scientist will frequently be embroiled in conflicts about the fate and transport of their new
176 venture because of the requisite issues associated with creating a profitable new venture.

177 The norms of the scientist in the new venture creation process are challenged by the necessary business-
178 related tasks that comprise any entrepreneurial action. Capitalization occurs by securing intellectual property,
179 restructuring research groups, and establishing a corporate vehicle to maximize return (Etzkowitz, Webster, &
180 Healey, 1998). This aspect is typically foreign to the scientist. The corporate vehicles these scientists must
181 choose too can be a source of consulting ventures, technology asset firms, and product-oriented companies
182 ??Stankiewicz, 1998). Inherent in the efficient operation of these vehicles are business, not scientific, norms
183 at least as ??erton (1942) envisioned. Mitroff (1974) demonstrated that scientific research and work practices are
184 influenced by business-related normative systems and these systems, "?not only do not conform to the Mertonian
185 norms but also are point for point contrary to them" (p. 594). Therefore, many entrepreneurial scientists decide,
186 sometimes unwittingly, to enter a lifeworld that is not their own. The existing peer-reviewed literature presents
187 little exploratory data about the relevant aspects of the commercialization experience from the perspective of
188 the scientific entrepreneur. Further, the data that does exist implies the commercialization activities impart a
189 subservient relationship of the science to financial interests. These financial interests might be brought about by
190 outside investors or evolve from the monetary needs of the entrepreneur. The lived experience of the scientist
191 that initiates and sustains the venture is also not represented as a subset of the seminal literature. There is an
192 unrealized potential and a gap in the literature in this regard.

193 The research questions is -How does the scientist-turned-entrepreneur perceive the lifeworld changes brought
194 about by the new venture creation experience in terms of role conflict, corporate governance, and vision for
195 the future? The development of this research posited other sub-questions. What is the difference in the lived
196 experience of autonomous and dependent scientists-turned-entrepreneurs? How do these entrepreneurs perceive
197 the role of conflicts, firm governance, and future fate of the innovation? How does the experience shape their
198 beliefs and visions of the future? Answering these questions contributes to the existing body of knowledge and
199 expresses the reflexive lived experience in a qualitative postmodernist perspective from the view of the scientist-
200 turnedentrepreneur.

201 The purpose of this research is to understand the perceptions of autonomous and dependent scientific
202 entrepreneurs based on their understanding of role conflicts, business governance, and visions for the future.
203 Using a lived experience study of successful scientific entrepreneurs, both autonomous and dependent, their
204 reflexive understanding of the new venture creation process is exposed. The knowledge claims of the existing
205 literature is given meaning in today's context because of the entrepreneur's lived experience (Creswell, 2007). This
206 means that the lived experience of these scientific entrepreneurs is considered given their real world experiences
207 and placed into a historic and ethnologic construct. This research is designed to explore their lived experiences,
208 assess what the implications might be for other entrepreneurs and for future research, and provide insight into
209 the phenomena surrounding the scientific entrepreneur's agency in the new venture creation process.

210 The meaning of the experience that these entrepreneurial scientists endure is at least partially based on the
211 interrelationships inherent in the new venture whether as an autonomous or dependent scientific entrepreneur.
212 Understanding this meaning is necessary for researchers to understand because the scientific entrepreneur a)
213 runs the risk of divorcing themselves from the very cultural roles that heretofore sustained them, b) at risk is
214 the very concept of ethical transparency, and c) the suggestion inherent in these concerns is the belief that the
215 exportation of scientific discovery to industry in the modern day imparts some problems to be solved. Moreover,
216 the continued assumption that autonomous and dependent scientific entrepreneurs have the same experience
217 must be challenged because of the importance to academic pursuits, technological advancement, and social
218 improvement. The differences in the lived experience of these ventures deserve study because of the academic
219 interest in entrepreneurship, importance of industry driving scientific development, and the social insistence on
220 new technological advancements. Given the importance placed on scientific and entrepreneurial conflict. A choice
221 must be made between contract or IV.

222 7 OPPORTUNITY, RATIONALE, AND DESIGN

223 The seminal literature forms the understanding of scientific entrepreneurship in the modern day. Missing is
224 the meaning the experience imparts to entrepreneurial scientists with regard to corporate governance, conflicts,
225 control, and future directions of scientific innovation. An opportunity exists to explore the lived experience of
226 autonomous entrepreneurial endeavors versus those endeavors dependent on outside sources of capital to better
227 understand the scientific entrepreneur's view of the new venture commercialization process in terms of these
228 issues. a) Opportunity Statement b) Rationale activities in the U. S. and abroad and the dismal success rates in
229 entrepreneurial ventures documented by Headd (2002), a lived experience study is vital to the understanding of
230 the experience of these individuals.. This research incorporates qualitative inquiry to explore the phenomenon of
231 scientific entrepreneurs in the new venture creation process. Phenomenology is a research perspective that is suited
232 to the research question. Likewise, phenomenology is an appropriate platform for exploring the understanding
233 of manifold aspects of a phenomenon (Creswell, 2007). Husserl (1948) suggested that researchers not seek
234 quantitative descriptions but rather return to the meaning of the phenomenon to humans. The human experience
235 is the true reality in the context of the human mind. Therefore, this research seeks the essence of the experience
236 from the perspective of those successful scientific entrepreneurs that have endured it. Patterns, trends, or themes,
237 emerged using inductive reasoning in the data collection and analysis.

238 Interviews of successful, for-profit scientists that started a new venture were conducted to evaluate the
239 retrospective assessment of events they deemed important in the success of their ventures. The research sought to
240 gain a thorough understanding of issues related to role conflicts, corporate governance, and vision for the future.
241 The study population was segregated between autonomous scientific entrepreneurs and dependent scientific
242 entrepreneurs.

243 Purposeful sampling was used for selection of participants. A sample size of 40 was used where half were
244 autonomous ventures and half were dependent. This sample size is appropriate for this study given the research
245 methodology. Sample size is not as ratiodependent as in quantitative assessments so the percentage of the
246 population used is less crucial (Creswell, 2007). The participants were all successful scientific entrepreneurs in
247 the Midwestern United States, were still in the same science-related business they founded, had operated their
248 businesses profitably for, at least, the last ten years, and were unfamiliar with the researcher before the interview.
249 Figure 1 The firms each accumulate between \$800,000 and \$25 million in annual revenue and provide work for 10
250 to 250 employees. The firms operating as Liability Corporations were, in all cases smaller firms where the initial
251 investment was possible by the owner or where investment did not include ceding control as represented by voting
252 share. The firms operating as Subchapter C Corporations were larger where the initial investment exceeded \$1
253 million and control of the venture was shared or exceeded by financial interests such as angel investors, investment
254 firms, or venture capital firms.

255 A prequalification questionnaire was completed by each scientific entrepreneur to determine that the participant
256 could answer the research question in a Subchapter S Corporations were larger where the initial meaningful
257 manner. Interviews capture a multitude of views about a theme in a manifold social perspective (Kvale, 1996).
258 A series of discursive one-on-one interviews were performed to generate rich and detailed data. The objective of
259 interviewing these individuals was to explicate emergent themes representative of their understanding of business
260 governance, control, and direction of the venture. Emergent themes are a grouping of perspectives that relate
261 across the expressed dialogue of the collective and are consistent among the participant group. The interviews
262 of 40 participants presented themes via the analysis of over 150 pages and 5,500 transcribed lines of text. The
263 data was classified, coded, and analyzed using NVivo? software. Certain elements represent pervasive themes
264 that emerged from the research although other elements expressed were given equal weight. Irrespective of the
265 persistence, themes are presented so that an inclusionary representation of the experience can be understood.

266 Researcher bias was minimized using triangulation. Triangulation exposes missing themes and confirms
267 thematic representations. Triangulation is, "? used to show that independent measures agree or, at 1994,
268 p. 266). The themes presented in this section were checked using peer review or, according to Denzin (1978),
269 researcher triangulation. After application of pseudonyms to assure confidentiality, a colleague, who was not
270 involved with the data acquisition or a part of the data set, evaluated the thematic representations to consider
271 alternative meanings or additional themes. This research sought, "?convergence among multiple and different
272 sources of information to form themes or categories in a study" ??Creswell & Miller, 2000, p. 126). This assists
273 with data validity and credible data reduction.

274 8 DATA PRESENTATION

275 Six categorical themes are resident in the lived experience that comprises the scientist's conception of the new
276 venture creation process with regard to role conflict, corporate governance, and the future direction of their
277 ventures. These themes were relatively pervasive across the two groups. Little consistency exists between the
278 autonomous firms and the dependent firms with regard to corporate governance and role conflicts. The prospects
279 for the future of their firms varied based upon the interests of each entrepreneur.

280 Theme 1: Perceptions of deficient business/managerial expertise.

281 The first theme resident in the data is a realization of the difficulties associated with the new venture creation
282 process. This theme was omnipresent among the participants. The difference resides in the different types of
283 problems that surfaced.

284 In the autonomous scientist group, various statements describing the business and management related
285 problems and challenges of establishing a viable new entity indicate this reality. Most of these statements include
286 issues related to personnel management or financial matters such as stories of inadequate cash flow, deficient
287 human resource decisions, ineffective political savvy, and various other real world conundrums. Statements like,
288 "The personnel problems were frequent?" or "Cash flow was killing us," indicate this theme. For one, the problems
289 were more intimate. least, do not contradict each other" (Miles & Huberman,

290 **9 V.**

291 The employees in my firm were looking to me to guide this company. At times, I felt wholly unprepared to do
292 so. Many times in those early years, we were hemorrhaging money. The income was not enough. I spent more
293 time with my accountant than I did with my projects, some weeks. This resulted in a personal appraisal that
294 oftentimes led to an acknowledgement of their lack of preparedness, lack of business adroitness, or the many
295 mistakes made in the business or managerial aspects of running a business.

296 The dependent ventures were not without similar concerns. The only seeming difference in the incidence of
297 this theme is the description of which business area the problem surfaced. For the dependent businesses, many of
298 the entrepreneurs faced problems related to personnel, finance, organizational development and the like, but they
299 had others to rely on. This is shown in statements like, "We were young and growing so our investors were very
300 important to us" or "Our Board was very patient with explaining the basic HR functions to me." One participant
301 was more candid about the experience.

302 The organization needed my leadership in so many areas I did not know where to begin. This was far afield
303 from my education. My Board was insistent that I hire an administrator. Even though I was reticent, I did.
304 Turns out, it was a great decision.

305 In both the autonomous endeavors and the dependent endeavors, business and management problems surfaced
306 often. The scientist's incapacity to manage these issues became tangible in the consequences and penalties caused
307 by their lack of experience. It was not their surprise at this aspect of the new venture creation process that most
308 perplexed the participants, it was the latent realization of the importance of these aspects and the resulting
309 damage their ignorance caused.

310 **10 January 2012**

311 © 2012 Global Journals Inc. (US) Theme 2: Need for the scientist's involvement.

312 The second theme resident in the data is a realization that the scientist was an integral part of the new
313 venture creation process. Most believed this was a foregone conclusion. For the autonomous ventures, this
314 One participant from the autonomous group put it most succinctly. "I am the business." She went on to state
315 that clients, financial institutions, and the firm's employees believed she personified the venture. This caused
316 consternation because, as she stated, "We are really a producer of (a specific resin) that also does research. The
317 process is pretty clear-cut." She was flattered that others found her to be so indispensable but she believed their
318 description of firm dependency persistent, the underlying cause varied between the groups.

319 Most of the autonomous group initially believed they understood the role they had chosen as an entrepreneur
320 though it was not often a positive perception. The understanding became realized in various stories of emotional
321 angst and anxiety. This was evident in statements like, "I stared out the window and wondered what I had
322 gotten myself into" or "We were down to 20-grand and I was getting nervous." One My employees can try to
323 do this without me and I encourage that. But, not a day has gone by where I am not called on to make both
324 scientific and management decisions. Some of this is because I am the boss. A lot of it is because there is an art
325 to research and it is not all cut-and-dry.

326 The above implies that the scientist, both because of their role as principal and because of their education,
327 experience, and knowledge is vitally important to the business. Whether they believed the perceptions of others
328 or not, their role as a scientist and principle is necessary for the venture.

329 The dependent group mostly echoed the comments of the autonomous group. Most scientists, at least initially
330 believed their innovation framed the establishment of their organization. One remarked, "In the early days, I was
331 involved in the construction of this business. I sat in on most board meetings and made important decisions."
332 He later stated that this waned, as the product became more of a commodity. "I retreated to my lab and I am
333 pretty happy looking for new things to research." He later admitted that he liked his involvement with the early
334 establishment of his business. One participant suggested a much more disheartening perspective on this issue.

335 At times, I felt like a show pony. I was trudged out to every social club, trade show, and high society gala they
336 could make me go to. It was boring and belittling. I was the lead developer and chief operating officer, and I was
337 expected to be a carnival barker. This perspective, though not to the same extent, was persistent across much
338 of the dependent group. Five suggested that they, "? are still involved with some of the business-related aspects
339 of the venture and still feel instrumental in its development." The need for the scientist to be involved was vital,
340 at least initially, but in the view of the participants, seemed to fade over time. proffered another perspective.

341 I was finally steering my own ship. I had developed a service, found a partner, bought some equipment, and I
342 was out on my own. I grew into the role. Sure, I had problems but I managed. I liked being both the CEO and
343 chief physist.

344 Most of this group underestimated the toll that this new role would extract. Many stories related the amount
345 of time and effort they expended in being both the lead scientist as well as the owner. Yet all stated they
346 understood and accepted the roles they had chosen. Conflict over role ambiguity was present in the dependent
347 group. Most of the discussion evolved to expose some level of disenfranchisement for the scientist. For half,
348 this required extended meetings and, in some, written descriptions of what the company expected from them.
349 Most detailed various stores of misunderstandings between what they thought their role would be in the new
350 venture. One participant's statement reflects most of the group.

351 My initial conception was that I was a valuable member of the team. I was involved in development of getting
352 the innovation into a sellable product. I was also involved with the marketing and delivery. Once this was
353 complete, I found I was later less involved.

354 Often this caused consternation for the entrepreneurs. "Later, I was expected to go back to the lab to find
355 something else." Other statements like, "I was only as good as my last invention" demonstrate the thought that
356 the scientist became more involved in the production of new developments versus being aligned with their former
357 innovation. One participant stated his relevant view on other issues of role ambiguity.

358 11 Theme 3 : Role ambiguity

359 The third theme resident in the data is the desire to seek an understanding and undertake the necessary actions in
360 their position with the company. This theme was suggested by a broad array of participant viewpoints. Though
361 the theme was Most of the scientists in the dependent group stated that their involvement in the day-to-day
362 operations of the business was less than they initially expected. reality was represented in the burdens of the
363 start-up. For the dependent ventures, this generated conflicts within the organization. Theme 4 : Vindication,
364 growth and empowerment.

365 The fourth theme resident in the data is the reflection that the scientist had achieved personal growth through
366 the process in spite of the viewpoints of others. In many, this was demonstrated as vindication that their efforts
367 resulted in a business that was built upon their ideas. In others, it was demonstrated in the revelation of enhanced
368 abilities in the management aspects of running a business. This theme was pervasive, though the underlying
369 cause varied between the groups. Before, I was just a person in the lab. When I discerned this opportunity, I
370 built it on the science. Later, the success of the firm needed to be based on business. Others suggested I needed
371 to change. I worked very hard to understand that, in all its aspects. That's probably why I'm still involved and
372 have the backing of the Board.

373 These individuals later suggested that the process fulfilled their intentions and this led to satisfaction.
374 Statements like, "I've grown through the process" and "I have become more well-rounded as a person" demonstrate
375 their logic, though not all of the entrepreneurs believe this came without an alteration in their initial conception.

376 The firm is more profit-focused than I think it needs to be. Innovation comes in many forms and not all need
377 to be based on which products or services produce the most profit. We actually pass-up on many ideas because
378 they will not generate enough profit. This, I think is a problem. I'm working to remedy this internally. This
379 rationale is not atypical among this group. The constant focus on how much money a product or service will
380 generate versus the contribution to the public good with less money generation is a persistent cause of concern
381 for this group. The focus on profitability still does not sit well with many of the dependent entrepreneurs.

382 Theme 5 : Feelings of obsolescence, disinterest and the desire for change.

383 In the autonomous group, the demonstration of this theme was readily apparent. Many entrepreneurs detailed
384 instances of growth and development caused by their accomplishments in creating a successful entity. Many
385 went on to express how they felt their decision to engage in the new venture creation process exonerated their
386 decisions among their family, friends, coworkers, and former peers. In the words of one participant, "I did not
387 receive much support so when the positive results of my work became evident, I knew I had been right and they
388 had been wrong." This led many to the belief that they were better able to handle the myriad of decisions and
389 actions necessary to sustain their entities. One put it in this perspective.

390 As I look back, I can see that all of the mistakes I made forged my development as a businessperson. I learned
391 to adapt and make solid judgments. I began to look at all my decisions based on the business, not just the
392 science.

393 The dependent entrepreneurs echoed similar commentary. They suggested many of the same perspectives as
394 the autonomous group.

395 In my case, I was intimately involved in the business plan. I made decisions on financial requirements,
396 marketing decisions, regulatory requirements, and most other aspects of the business. Later, my role changed
397 but I can still see my handiwork in the success of this firm. I knew it would work and I was right.

398 Many went on to discuss how the development of their business changed them.

399 The groups discussed their personal appraisal of the changes brought about by their creation of a successful
400 entity in a variety of contexts. Once the business was believed to be self-sustaining, the entrepreneurs constructed
401 a mental determination of other possible intentional changes in their lifework. In some, this was based on their
402 success, in others, the basis was a need to alter their situation due to discontent.

403 The autonomous group detailed their future in light of their success. In all cases, this was framed against
404 their fulfillment by the new venture creation process. Many statements detail this as shown in a thoroughly
405 representative statement of one entrepreneur.

11 THEME 3 : ROLE AMBIGUITY

406 I need to do something else and the business has given me latitude to do that. I have the ability to go off in
407 any direction I so choose. I am starting a new division and I have more time to commit to it since the structure
408 is in place to keep this business going.

409 Most of these entrepreneurs went on to detail elaborate plans for personal and professional. Most of these
410 scientific entrepreneurs detailed instances of being, "pushed to the back burner" in the business because of the
411 need for the business to become and sustain profitability. This caused dismay for the entrepreneurs. The disparity
412 between their preconceptions and the reality of advancing the business were at odds with their initial conceptions.
413 This often caused discontent for the entrepreneur.

414 I think most of the change in my role was because of my lack of experience. The management team decided I
415 would be better used elsewhere. I did not like this but they had the ear of the Board and that meant a lot. They
416 focused on making money. I was relegated to other areas of the operations. business aspects too. I saw what
417 these people (investors) did. I can do it too." Others stated that once the science became a business, they became
418 less interested. "I got to the point that I believe this is commodity, you know, like selling oranges or something.
419 I need to get that mental stimulation for the science back." In the case of these entrepreneurs, the conception
420 that the business appropriated the science, became untenable to the scientist though some used this as leverage
421 to expand into other endeavors that were obviously laden with business implications. The sixth theme inherent
422 in the data suggests a mental or literal decision to excel beyond this initial foray into entrepreneurship once the
423 entrepreneur achieved success. A central theme of this part of the dialogue is transcendence beyond the status
424 quo. Specific discourse shows this expression in the autonomous perspective. "I now desire new knowledge" or
425 "I continue to expand who I am" show this perspective. In this, the entrepreneurs presented data that inferred
426 that the experience made them believe that other ventures are achievable. Virtually all of the autonomous
427 scientist-turned-entrepreneurs indicated that they would diversify their current business or progress into other,
428 sometimes more elaborate, undertakings.

429 Most telling is the representation that each scientist-turned-entrepreneur would relive the experience again,
430 either figuratively or literally. An interesting point that was consistent among the autonomous entrepreneurs
431 was the context of a similar autonomous entity. None of these entrepreneurs suggested seeking outside sources
432 of financing, partners, or other controlling interests.

433 The dependent group of entrepreneurial scientists stated similar interests. Though, the framing of their new
434 conceptions was different. The framing was that of re-gaining control over the fate and transport of their endeavor.
435 One scientist embarked into a discussion as to why he thinks this way. I think (the new venture creation process)
436 makes you a mentally healthier person. You know, Jefferson never really conceived the U. S. to be a culture of
437 laborers. He wrote about selling your trade to another man in exchange for goods and services. Working for 'the
438 man' was not in his conception for most of us. I agree with Jefferson in this regard. This makes you a healthy
439 person, knowledgeable, and well rounded. It also makes you want to do it all over again.

440 In much of the discourse with the dependent entrepreneurs, the discussion was laced with undertones of more
441 independence and control. I know I am not where I need to be. I envisioned a business where the science was
442 of paramount concern. This is not that venture. I need to revisit my situation and get back to where I thought
443 I was going. You know, a research firm where science drives the end result. Some of these entrepreneurs were
444 nondescript as to their desires for the future. Transitional phrases like, "I will start another venture?," "I want to
445 expand my business into?," or "I would like to do it again?," reflect this sentiment. Several of the entrepreneurs
446 suggest business transcendence while others state that they will pursue undertakings of a completely different
447 nature. Oftentimes this includes personal expansion into other areas of interest, which require longer-term goals.
448 The satisfaction of this experience appears to lead to a desire for more.

449 The six themes resident in this study provide insight into the lived experiences of the scientific entrepreneur
450 with regard to corporate governance, conflicts in the commercialization of the innovation, and prospects for the
451 future. Each participant presented a unique experience that differed in the undertaking and attainment of a
452 successful entity. Nonetheless, common themes emerged through analysis of the data. These common themes
453 assisted with an understanding of 'how' the scientific entrepreneurs experienced 'what' they experienced. An
454 acknowledgement of these themes allows researchers to look beneath the textural descriptions and themes to
455 garner a deeper meaning about the phenomenon (Patton, 2002). The dependent group also demonstrated this
456 theme. However, in most cases, dissatisfaction framed their motivation to encounter new or differing realities.
457 This is demonstrated by one participant who stated, I can see that my importance here has passed. This place
458 can run without me. I need to build on my new abilities and I believe I could do this again, in a better way, and
459 on my own terms. In the next five years, I will be a different person again.

460 Others suggested motivations based on the expansions to their business, changes in their personal desires for
461 new endeavors, and enhancements for differing visions for the future. Most of this was based on the perception
462 that they had outgrown their role and believed there was something more for them to do.

463 presents fewer opportunities for management inefficacy by the scientist, the investor group contributed various
464 hardships in corporate governance. The issues related to corporate governance are also presented in theme two,
465 the need for the scientist's involvement. The need for the scientist to be involved was vital. In the autonomous
466 group, this was necessary to manage both the science-related and business-related tasks. This suggests the
467 scientist's role in corporate governance is more complete for the autonomous venture but is also more fraught
468 with hardships due to ineffectual businessrelated capacities. For the dependent group, the scientists' involvement

469 was necessary, at least initially, though their necessity seemed to wane as the business evolved. This suggests
470 the scientist's role in corporate governance was initially important but subsided as the business became more
471 successful owing to the involvement of the investor groups.

472 Second, the commercialization efforts generated role conflicts for the scientists. The expressions of conflict
473 were pervasive across the group in theme three, role ambiguity. In the autonomous group, this is evidenced
474 in an on-going and outward display of conflicts whereby the scientist must constantly shift between business
475 manager and lead scientist to handle the myriad of problems that arise. In the dependent group, role ambiguity
476 is more intimate. In this, the scientist's role changes from the preliminarily incessant involvement in most
477 every decision to being relegated to narrower roles once the business becomes self-sustaining. The effects of the
478 commercialization effort too can be seen in theme four, vindication, empowerment and growth. Overcoming their
479 problems, adjusting to cultural norms, and securing an approving perception by others were seen as critical to the
480 experience of the autonomous entrepreneur. The dependent entrepreneurs suggest their preconceptions about
481 the validity and viability of the business were correct and this suggested the commercialization effort similar
482 nature. In the dependent group, this theme was also apparent but was framed by obsolesce and irrelevance to
483 the future of the venture. These entrepreneurs admitted that the experience had led to an enhancement of their
484 self-belief such that they have a new perception of what is important and how much work is necessary to attain
485 a successful new venture. Likewise, prospects for the future were presented in theme six, transcendence to other
486 ventures. In the autonomous group, this was presented in statements suggesting exuberance at the thought of
487 recreating similar ventures. The dependent group also displayed this perspective though the context was framed
488 in the desire to regain autonomy and control over the fate of the innovation or direction of a new undertaking.
489 This means the phenomenon brought about the desire for further growth, elaboration of self-directedness, and
490 aspiration to transcend to higher levels of undertaking. Figure 2 presents the meanings, which lead to the
491 exposure of the essence of the experience. was fulfilling, even though their involvement changed over time. Both
492 suggest the experience identified heretofore unrecognized abilities in understanding and assimilating business-
493 related concerns, pride in their achievements, and value in the commercialization process. This is important
494 because the experience demonstrates the growth of the entrepreneur and elevation in self-confidence leading to
495 empowerment because of the successful commercialization experience.

496 Third, all detailed their prospects for the future based on the attainment of their successful entity. This is
497 readily apparent in theme five, feelings of obsolescence, disinterest and the need for change. In the autonomous
498 group, this theme took on an affirmative character where the relevance of their history formed the basis for future
499 entrepreneurial ventures of a

500 **12 SYNTHESIS OF THE THEMES**

501 Themes are presented to facilitate understanding of the data and these thematic representations can be
502 synthesized. Theme synthesis is consistent with Husserl's (1931) concept of phenomenological reduction by
503 consolidation. This consolidation involves an abstraction of the lived experience because this structural portrayal
504 of the emergent themes resides outside of the individual experiences presented in the data (Patton, 2002). Theme
505 synthesis gives rise to specific meanings about First, most suggested that they have experienced a multitude
506 of issues related to corporate governance. This is readily apparent in theme one, perceptions of deficient
507 business/managerial expertise, because while the autonomous scientific entrepreneur maintains control over the
508 venture, they are less prepared for the rigor of the experience and less knowledgeable about the entrepreneurial
509 process. This is also evident in the dependent group. While this group VI.

510 the experience of commercializing scientific ventures. The meanings inherent in the above suggest that the
511 experience, whether through an autonomous venture or a dependent venture share many of the same meanings
512 though expressed through different thematic representations. This leads to, and allows, for a mental distillation
513 of the experience. This distillation is the essence where the experience is "?simply there" according ??usserl
514 (1964, p. 9). This essence is inherent in the experience, is present for all successful scientific entrepreneurs of
515 this research, and requires no further elucidation.

516 **13 THE ESSENCE OF THE EXPERIENCE**

517 The experience is realized in the concerns over corporate governance where the autonomous scientific
518 entrepreneurs display more business related hardships and the dependent scientific entrepreneurs more asymmetrical
519 business governance. Governance presents itself in varying gradations of satisfaction for the autonomous
520 entrepreneurs and dissatisfaction for the dependent entrepreneurs. The experience is also realized in the conflicts
521 that that the process causes.

522 Successful resolution and placation of these conflicts evolve from experiencing the multitude of perplexities that
523 form their lifeworld in the initial stages of the process and serves to form their decision to engage in the process
524 again, sometimes with different objectives. This leads to a conceptualization that the process can be replicated
525 and that further accomplishments are possible across a broader spectrum of endeavors. In the autonomous group,
526 this is typically on a similar scale. In the dependent group, the dissatisfaction with the experience precipitates
527 the notion that other outcomes are preferred. In all cases, and professional growth, and movement toward

528 selfactualization, advances feelings of empowerment and transformation. Thus, the essence of the experience is a
529 perpetual belief that further entrepreneurial endeavors can lead to similar successful outcomes.

530 14 IMPLICATIONS

531 The aim of this work is to differentiate the lived experience of autonomous scientific entrepreneurs from those
532 dependent on other controlling interests. This research shows many of those differences in the commercialization
533 process even though the essence is the same. The rationale for this differentiation is based upon the extant
534 literature and the findings of this research. The implications of that differentiation are significant. First, it is
535 apparent that the role of the scientist VII.

536 VIII.

537 an affirmation of self-value, enhancement of personal changes consistent with the findings of Zucker (1998),
538 Stuart and Ding (2006), Samsom (1990), and Phillips and Zuckerman (2001). In both groups, a noticeable
539 difference is readily apparent where the role of the scientist in the new venture creation process is ensconced in
540 the necessary business-related tasks that comprise most entrepreneurial ventures. Interestingly, the concept of
541 a loss of scientific norms was virtually absent in the autonomous group in deference to Mitroff (1974). These
542 scientists did not suggest any form of disparity with scientific norms nor did they suggest their work practices were
543 influenced by business-related normative systems. This was apparent in the dependent group and these scientists,
544 found themselves entering unwittingly into a lifeworld that seemed foreign. Over time, the autonomous group
545 became more business focused while retaining much of their utilization as a scientist. In the dependent group,
546 the scientist either adapted to a new business-oriented role or was resigned to other, often less pleasing, roles in
547 the organization consistent with Cotgrove and Box (1970). This might be a rationale as to why scientists publish
548 more during the undertaking due to being pushed to the back-burner by management, consistent with Zucker
549 (1998). Second, it is apparent that the commercialization process is different consistent with the findings and
550 rationale of Litvak and ??aule (1973), Sindermann, (1982), and Moss-Kanter, (1989). Yet, this scientist. In the
551 autonomous group, commercialization was imbedded in the morass of business related problems associated with
552 the scientist-turnedentrepreneur's inefficacies of starting, managing, and sustaining a business. In the dependent
553 group, this notion is enmeshed in the conflicts of business governance.

554 Third, competitive market pressures for profitability brought about conflicts for the scientific entrepreneur.
555 Entrepreneurs of both groups turned ideas into profits consistent with Krimsky (2004). Inconsistencies were found
556 with the autonomous entrepreneurs in the discourse of Zucker, Darby and Armstrong ??2002) where innovation
557 development was predicated on value. These entrepreneurs developed their innovations, most often, with limited
558 consideration of value. The dependent group though was consistent with Zucker, Darby and Armstrong (2002)
559 where innovations developed slowly where value is thought to be low and faster if the value was high. Also
560 consistent with their proposition was the concern over appropriation where competing opportunities were high
561 (Zucker, Darby & Armstrong, 2002). The corporate world that stresses profits is therefore pitted against the
562 scientific motivation for knowledge-creation and information building. Further, the dependent group clearly
563 demonstrated Kleinman and Vallas' (2001) concept of asymmetrical convergence where investment forces appear
564 to have a more influential role in the business. In the autonomous group, this influence was left to market
565 pressures.

566 Fourth, the relationship between fundamental discoveries and product development, production, and market
567 acceptance was crucial to the entrepreneur's success in both cases, consistent with Greenberg (2007). However
568 Greenberg's contention that the scientist revises their expectation about the science of the autonomous
569 entrepreneur. In this group, it is better termed as an addition versus a revision. For the dependent group,
570 Cotgrove and Box's (1970) contention that this collaboration, at times, resulted in a transition period where
571 their expectations about science were revised to meet company needs, or, if unable to do so, they were fated to
572 the disillusionment of role incompatibility is seen to be consistent. This was not referenced in the discussions with
573 the autonomous entrepreneurs because this role incongruity seemed irrelevant to their scientific culture because
574 operating in a competitive marketplace is a role they accepted.

575 Finally, the concept of autonomy and control provided an eclectic experience for these entrepreneurs. As
576 could be expected, this theme was subdued for the autonomous entrepreneurs. In fact, at times consternation
577 was evident because of the singular nature of this aspect of the new venture creation process. However, for
578 the dependent entrepreneurs autonomy and control over the research and commercialization process became a
579 battleground because of the dissonance in the expectations of entering a competitive marketplace, working with
580 vested interests, and having to share control over the fate of their venture or innovation. Beyond this discrepancy,
581 the direction and furtherance of the research were notable causes for unease to the scientist as evidenced in the
582 scientists' concern over the value and perception of their innovation consistent with the thoughts of Kleinman
583 and Vallas (2004). is more revealing for the business, not necessarily for because of business realities needs to be
584 revisited because it was not suggested in the discourse of the The theory advanced is that investor led scientific
585 entrepreneurial endeavors are different than those led by autonomous entrepreneurial endeavors and should be
586 treated differently. This is because not all scientists engaging in scientific entrepreneurial endeavors share the
587 same experience and resultant outcomes for the future. Further, while the scientist undergoes a role change, this
588 is accepted by the autonomous scientific entrepreneurs as a part of the reality of the life world they have chosen
589 as opposed to the dependent scientific entrepreneurs where this reality is thrust upon them by others. Though

590 success leads to empowerment in both groups, the governance and control over the venture imparts different meaning to the experience. The consequences of the experience ^{1 2 3 4}

1

Figure 1: Figure 1 :

Figure 2: .

591

¹© 2012 Global Journals Inc. (US)

²Corporate Governance, Roles, and Future Directions: New Venture Creation of Autonomous and Dependent Entrepreneurial Scientists

³January 2012© 2012 Global Journals Inc. (US)

⁴© 2012 Global Journals Inc. (US) © 2012 Global Journals Inc. (US)

45

Figure 3: . 45 Global

.1 CONCLUSION

This research provides insight into the differences in the new venture creation experience of autonomous scientific entrepreneurs and dependent scientific entrepreneurs. The focus of this research is to explore the differences in the way these entrepreneurs understand the considerations of governance and control, disparities in the commercialization of the innovation, and issues related their future direction. The aim of this research allows for the differentiation of these scientific entrepreneurs based on their lived experience. This study identified many associations with the existing scientific entrepreneurship literature that addresses the current debate about these endeavors in light of the socio-economic pressures for profitability, intervention of government and industry, and the experience these individuals endure in the new venture creation process. Likewise, this study revealed some discrepancies between this research and the research of others so as to suggest avenues for future research into scientific entrepreneurship.

.2 ASSUMPTIONS AND LIMITATIONS

The study is limited to successful scientific entrepreneurs that have founded their own autonomous business entities as defined in this work. The chronologic time limits the research to the same socioeconomic climate. For this reason, it should not be assumed that all scientific entrepreneurs behave similarly at other times or in other environments.

Qualitative assessments using the phenomenological perspective have assumptions that influence the study. The researcher has a role in the interpretation and consolidation of the data generated from the interviews of the participants. Therefore, the researcher's ability to effectively interpret the data can affect any phenomenological study. In addition, this research assumes that the participants candidly and honestly discussed their experiences in a forthright manner. Further, generalizing the data beyond the sample population is discouraged. The information presented is intended to illustrate the views of this participant group only.

.3 Global Journal of Management and Business Research Volume XII Issue I Version I

Corporate Governance, Roles, and Future Directions: New Venture Creation of Autonomous and Dependent Entrepreneurial Scientists suggest different modes of undertaking future endeavors. The modality of the new undertaking for autonomous entrepreneurs is shown to exhibit the same freedom and control is different for dependent scientific entrepreneurs that seek to erect new ventures that will afford them more control and freedom.

.4 IX.

X.

[Cotgrove and Box ()] , S Cotgrove , Box . *Science, Industry, and Society* 1970. George Allen & Unwin.

[Litvak and Maule ()] , A I Litvak , C J Maule . 1973.

[Niemi ()] , R J Niemi . 1993.

[Ahn ()] 'Building a conducive environment for life science-based entrepreneurship and industry clusters'. M J Ahn . *Journal of Commercial Biotechnology* 2008. 14 (1) p. .

[Etzkowitz et al. ()] 'Capitalizing Knowledge: New Intersection of Industry and Academia'. H Etzkowitz , A Webster , P Healey . [fromhttp://www.gaebler.com/Entrepreneurship-for-Scientists.htm](http://www.gaebler.com/Entrepreneurship-for-Scientists.htm) 10. *Entrepreneurs.Gaebler.com*. Retrieved on April 1998. 2010. 5. State University of New York Press

[Danielson ()] *Characteristics of engineers and scientists, significant for their utilization and motivation*, L E Danielson . 1960. Ann Arbor, MI: University of Michigan Press.

[Zucker et al. ()] 'Commercializing Knowledge: University science, knowledge capture, and firm performance in biotechnology'. L G Zucker , M R Darby , J S Armstrong . *Management Science* 2002. 48 (1) p. .

[Corporate Governance, Roles, and Future Directions: New Venture Creation of Autonomous and Dependent Entrepreneurial Scientists] *Corporate Governance, Roles, and Future Directions: New Venture Creation of Autonomous and Dependent Entrepreneurial Scientists the United States. Theory and Science*, 30 p. .

[Creswell and Miller ()] 'Determining validity in qualitative inquiry'. J W Creswell , D L Miller . *Theory into Practice* 2000. 39 (3) p. .

[Molle and Djarova ()] *Enhancing the effectiveness of innovation: New roles for key players*, W Molle , J Djarova . 2009. Cheltenham, UK: Edward Elger Publishing.

[Zucker ()] 'Entrepreneurs, star scientists, and biotechnology: Entrepreneurial intentions of bioscientists and biotechnologists'. L G Zucker . *National Bureau of Economic Research Reporter* 1998. 7 (4) p. .

[Husserl (ed.) ()] *Experience and Judgment*, E Husserl . L. Landgrebe (Ed.). James S. Churchill and Karl Ameriks, trans (ed.) 1948. 1973. Evanston, IL: Northwestern University Press.

645 [Bell and Mcnamara ()] *High tech ventures: The guide for entrepreneurial success*, C G Bell , J E Mcnamara .
646 1991. Reading, MA: Addison-Wesley.

647 [Husserl ()] *Ideas: General introduction to pure phenomenology*, E Husserl . 1931. London: George Allen and
648 Unwin.

649 [Kvale ()] *Interviews: An introduction to qualitative research interviewing*, S Kvale . 1996. Thousand Oaks, CA:
650 Sage Publications.

651 [Phillips and Zuckerman ()] 'Middlestatus conformity: Theoretical restatement and empirical demonstration in
652 two markets'. D J Phillips , E W Zuckerman . *American Journal of Sociology* 2001. 107 p. .

653 [Maslow ()] *Motivations and personality (1st Ed*, A H Maslow . 1954. New York, NY: Harper and Rowe
654 Publishers.

655 [Mitroff ()] 'Norms and counter norms in select groups of the Apollo moon scientists: A case study of the
656 ambivalence of scientists'. I I Mitroff . *American Sociological Review* 1974. Kluwer Academic Publishers. 39
657 p. .

658 [Packer and Webster ()] K Packer , A Webster . *Patenting Culture in Science: Reinventing the Scientific Wheel
659 of Credibility. Science, Technology and Human Values*, 1996. 21 p. .

660 [Miles and Huberman ()] *Qualitative data analysis: An expanded sourcebook*, M B Miles , A M Huberman . 1994.
661 (2nd ed.)

662 [Creswell ()] *Qualitative inquiry and research design*, J W Creswell . 2007. Thousand Oaks, CA: Sage
663 Publications.

664 [Patton ()] *Qualitative research and evaluation methods*, M Q Patton . 2002. Newbury Park, CA: Sage
665 Publications. (rd ed.)

666 [Kenney ()] 'Schumpeterian innovation and entrepreneurship: A case study of the U. S. biotechnology industry'.
667 M Kenney . *Small Business Administration* 1986. 2009. 2002. Office of Advocacy. 15 (1) p. . (Research Policy)

668 [Greenberg ()] *Science for Sale: The perils, rewards, and delusions of campus capitalism*, D S Greenberg . 2007.
669 Chicago, IL: The University of Chicago Press.

670 [Krimsky ()] *Science in the private interest: Has the lure of profits corrupted biomedical research*, S Krimsky .
671 2004. Lanham, MD: Rowan & Littlefield Publishing Group.

672 [Stankiewicz ()] 'Science Parks and Innovation Centers'. R Stankiewicz . *Capitalizing Knowledge: New Intersec-
673 tion of Industry and Academia*, H Etzkowitz, A Webster, P Healey (ed.) (Albany, NY) 1994. State University
674 of New York Press

675 [Kleinman and Vallas ()] 'Science, capitalism, and the rise of the "knowledge worker'. D L Kleinman , S P Vallas
676 . *The changing structure of knowledge production in*, 2004.

677 [Samsom ()] *Scientists as entrepreneurs, organizational performance in scientist-started new*, K J Samsom . 1990.

678 [Denzin ()] *Sociological methods: A sourcebook*, N K Denzin . 1978. New York, NY: McGraw-Hill Publications.
679 (nd ed.)

680 [Marx and Engles ()] *The German Ideology*, K Marx , F Engles . 1845. 1947. Wishart, Trans; New York:
681 International Publishers, Co.

682 [Merton ()] *The normative structure of science*, R Merton . 1968. Chicago: University of Chicago Press.

683 [Vinck ()] 'The sociology of scientific work: The Fundamental Relationship between'. D Vinck . *Science and
684 Society. Camberly* 2010. Edward Elgar Publishing.

685 [Husserl ()] *The train of thoughts in the lectures. The Idea of Phenomenology*, E Husserl . 1964. Norwell, MA:
686 Klewer Academic Publishers.

687 [Stuart et al. ()] 'When do scientists become entrepreneurs? The social structural antecedents of commercial
688 activity in the academic life sciences'. T Stuart , W Ding , W Waverly . *American Journal of Sociology* 2006.
689 112 (1) p. .

690 [Ambos et al. ()] 'When does university research get commercialized? Creating ambidexterity in research
691 institutions'. A Ambos , K Makela , J Birkinshaw , P Este . *Journal of Management Studies* 2008. 45
692 (8) p. .

693 [Moss-Kanter ()] *When giants learn to dance*, R Moss-Kanter . 1989. New York, NY: Simon and Schuster.

694 [Sindermann ()] *Winning the games scientists play*, C J Sindermann . 1982. New York, NY: Plenum Press.