

Evaluating The Determinants Of National Innovative Capacity Among European Countries

Dr. Maria Manuela Santos NatArio¹, JoAo Pedro Almeida Couto² and Maria Teresa Borges Tiago³

¹ Guarda Polytechnics Institute

Received: 13 September 2011 Accepted: 10 October 2011 Published: 22 October 2011

7

Abstract

This paper reflects upon the factors that influence the national innovative capacity that is based on the European Innovation Scoreboard database. The aim is to reflect on, and evaluate, the factors influencing national verify how different countries are positioned in terms of innovation outputs and determine which factors distinguish their level of innovative capacity. The results point to the existence of four groups of countries. On the other hand, the factors identified are related to the dimensions of institutional efficiency, namely the efficiency of institutions, types of regulation, effective rule of law and level of corruption, societies? cultural values associated with the level of hierarchy or "power distance" and "uncertainty avoidance." Aspects are related to the innovation framework, such as doctorates in science and engineering, business Research Development expenses, and the level of collaboration for innovation.

20

Index terms— Innovative Capacity, Innovation, National Culture, Institutional Efficiency, Innovation Infrastructure.

1 INTRODUCTION

The capacity for innovation plays a dominant and decisive role in determining who thrives in the global arena. For firms, innovation has the power of establishing a competitive advantage in the context of increasing globalization. For countries, the innovation capacity is a source of prosperity and growth (Belitz et al., 2008). Thus, national objectives may be achieved by increasing productivity and attracting investment to sustain continuous improvement in standards and quality of life.

The concept of innovative capacity was introduced by Suarez- ??illa (1990), to measure the level of invention and the potential for innovation in a information about the dynamics of the invention in economic activity. This knowledge can be used by policy-makers and scholars to better understand the changes in invention patterns, technology and competitiveness. The national innovative capacity can provide comparative information regarding the evolutionary process of inventive activity, as well as information on its relationship with the primary factors of the invention. Thus, the innovation capacity of an area is linked to the territorial dynamics of the innovation, legal and/or individual, and is conditioned by the specific characteristics of each area based on the five groups of factors/dimensions of this crucial process.

Considering these observations, the aim of this paper is to evaluate the factors that influence national innovative capacity. In this sense, and taking into consideration the European Innovation Scoreboard, we analyzed innovative capacity in terms of Small and Medium-sized Enterprises innovative behaviour. In the present paper, five hypotheses are proposed: the first is related to the influence of the institutional efficiency on innovative capacity; the second pertains to the role of national culture; the third refers to the influence of the innovation's collective infrastructures (human resources and the dynamics of learning and training) in the promotion of innovative

3 LITERATURE REVIEW

43 capacity; the fourth focuses on the sustainability and support system of innovation; and the fifth is associated
44 with the linkages and cooperation networks used to stimulate innovation capacity.

45 The rest of the paper is structured as follows. On the and decisive role in determining who thrives in second
46 point, a brief literature review is performed regarding the innovative capacity. The third point describes the
47 conceptual Model and the hypotheses. The two last points illustrate the methodology and primary findings
48 of the data, as well as discusses these results and their implications, stressing the limitations of the work and
49 suggesting avenues for future research.

50 2 II.

51 3 LITERATURE REVIEW

52 National innovative capacity can be broadly defined as the institutional potential of a country to T Abstract
53 -This paper reflects upon the factors that influence the national innovative capacity that is based on the European
54 Innovation Scoreboard database. The aim is to reflect on, and evaluate, the factors influencing national verify
55 how different countries are positioned in terms of innovation outputs and determine which factors distinguish
56 their level of innovative capacity. The results point to the existence of four groups of countries. On the other
57 hand, the factors identified are related to the dimensions of institutional efficiency, namely the efficiency of
58 institutions, types of regulation, effective rule of law and level of corruption, societies' cultural values associated
59 with the level of hierarchy or "power distance" and "uncertainty avoidance." Aspects are related to the innovation
60 framework, such as doctorates in science and engineering, business Research & Development expenses, and the
61 level of collaboration for innovation.

62 sustain innovation (Hu and Mathews, 2008;Huang and Shih, 2009). The concept of innovative capacity was
63 introduced by Suarez- ??illa (1990) to measure the level of invention and innovative potential of a nation.
64 According to Suarez-Villa, measuring the innovative capacity may provide important information about the
65 dynamics of the invention in the economic activity. Such knowledge may be used by policy-makers, or academics,
66 to assist in the understanding of the changes in the invention, technology and competitiveness. They can then
67 take action accordingly.

68 The concept of innovation capacity emerged as a meta-concept to denote the real and potential capabilities
69 of a system to convert knowledge into innovation, which is able to drive long term economic growth and wealth
70 creation (Lundvall and Johnson, 1994, Freeman 1995, Furman at al. 2002 ?? Schiuma and Lerro 2008). For
71 Matheus and Hu (2007), the innovative capacity of a country is the basic driving force behind its economic
72 performance; it provides a measure of the institutional structures and support systems that sustain innovative
73 activity.

74 The concept of national innovative capacity was explained in the works of Porter and Stern, (1999); Stern
75 et al. (??001) and Furman et al. (2002). Their primary purpose was to measure the origin of the differences
76 between countries regarding the innovative production, reflecting upon the analysis of the clusters of innovation.
77 For these authors, the national innovative capacity is the country's capacity (as a political and economic entity)
78 to produce and trade a new flow of technologies, reflecting the fundamental determinations of the innovation
79 process at all levels, not only the output level ??Stern et al., 2001).

80 In the last few years, several works have been enriching this analysis and clarifying the concept. It has been
81 introduced and adopted by different scholars interested in researching and understanding the factors and root
82 determinants of innovation dynamics and the capabilities of development (Furman et al., 2002; ??owells, 2005,
83 Schiuma and ??erro, 2008).

84 Using a managerial approach, Suarez-Villa (2003) analyzed the relationship between the inter-organizational
85 networks and innovative capacity, from which emerges a new type of organization: the "experimental firm".
86 ??002) approach, applying it to five "latecomer" countries from East Asia, in particular, Taiwan. While the
87 results are in broad agreement with the findings of Furman et al. and Hu and Mathews, some important
88 differences for latecomer East Asian economies exist such as the number of national factors that matter is smaller
89 and an important (though subtle) role seems to be assumed by the public R&D expenditure, acting as a steering
90 mechanism for the private sector.

91 On the other hand, university-based R&D (a basic research resource) has not exhibited a significant effect over
92 the past two decades. Hu and Mathews (2005) demonstrate that the public R&D funding in East Asia greatly
93 strengthens the contribution of specialization in the high-tech industries, however, this effect was only registered
94 when a latecomer country was pursuing a targeted strategy of catch up, as in the case of Taiwan.

95 More recently, Mathews and Hu (2007) examined the efforts of Taiwan's academic innovation through
96 institutional and organizational reforms. They also evaluated its impact in assisting Taiwan in moving beyond
97 the phase of being a catch-up manufacturing fast follower to that of an innovation-based technology developer. In
98 2008, Hu and Mathews performed the first study on China's national innovative capacity', extending their earlier
99 work conducted on the East Asian Tiger economies. They found an increase in patenting activity by Chinese
100 firms and organizations since 2001, and analysed the drivers behind this, as well as the quality characteristics of
101 patenting, in terms of intensity impact and links with the science base.

102 The innovation capacity in China was also studied by Fan (2008). The author analyzed the innovation capacity
103 and economic development in China and India, focusing on the transformation of national innovation systems.

104 Fan (2008) considers financial investment and human resources in R&D as two important input factors for
105 building up the innovation capacity of a nation. He also stresses the role of both governments in transforming
106 their national innovation systems to become more adaptable to economic development. One of the primary
107 focuses of R&D reforms was to integrate the science and business sectors and provide incentives for innovation
108 activities.

109 The study by Natário et al. (2007) reflected upon the factors that influence national innovative capacity,
110 based on the European Innovation Scoreboard (EIS) database. These authors tested the importance of the
111 innovation of variables that were not considered in the innovation scoreboard, namely national cultural aspects
112 and institutional efficiently, together with variables that were normally compiled in the scoreboard, such as
113 expenditures and human resources qualifications, namely tertiary education, sciences and engineering graduates.
114 At the regional level, Schiuma and Lero (2008) discussed the role and relevance of knowledge based capital as a
115 strategic resource and a source of regional innovation capacity. They identified human, relational, structured and
116 social capital, as the four primary knowledge based categories, building up the knowledge based capital of a region.
117 Schiuma and Lero (2008) used the concept of innovation capacity to refer to the overall innovation capabilities
118 that a region can express, both in practice, and potentially. This model includes both the innovation dynamics
119 taking place at the regional level, and those that could potentially be developed by policy andmanagement
120 actions, by leveraging local and external knowledge resources.

121 The relationship between national innovative capacity and network contamination effects on the international
122 diffusion of embodied and disembodied technology was analysed by Huang and Shih (2009). Their work examined
123 two different social network models: cohesion models based on diffusion by direct communication; and, structural
124 equivalence models, based on diffusion by network position similarity. The empirical results found distinguishable
125 influences upon the performance of the national innovative capacity between countries with different technological
126 diffusion forms and social proximity.

127 Embodied or disembodied technology diffusion through structural equivalence mechanisms has a significant
128 influence on the performance of national innovative capacity. However, a country is affected more by its
129 structurally equivalent competitors, than by its cohesion partners. Moreover, embodied or disembodied
130 technology diffusions through cohesion mechanisms may have negative effects on the performance of national
131 innovative capacity, which can be regarded as international technology diffusion via global stratification patterns
132 (Huang and Shih, 2009).

133 As a result, the innovative capacity is not concerned with any single aspect of innovation performance, but
134 with sources of its sustainability (Matheus and Hu, 2007). A country's innovative capacity, considered as the
135 ability of people and companies to create and transform knowledge into new, marketable products and services
136 and more efficient processes, cannot be measured directly (Belitz et al., 2008).

137 The innovative capacity of a territory, nation or region, is grounded in its microeconomic environment and
138 related to the number of scientists and engineers in the workforce and in the degree of protection of intellectual
139 property and in the power of the clusters. This last point reflects upon the concentrated location of the resources
140 that harness the managerial competitiveness.

141 For Stern et al. ??2001), national innovative capacity relies on three vectors: (1) the endogenous growth based
142 on the ideas of Romer (1990); (2) the theory of the industrial clusters based on the nation's competitive advantages
143 developed by ??orter (1990); and (3) the research developed in the nationalinnovation systems presented by Nelson
144 (1993). Its differences reflect the variations in economic geography, namely, the impact of the knowledge and
145 spillovers of innovation amongst closely situated companies, and in the innovation's policies through the level of
146 public support for basic research or the protection of intellectual property.

147 Stern et al. (??001) and Porter and Stern (1999) have highlighted the importance, not only of the present
148 competitiveness, but also of the capacity of sustaining it in the future, considering the following aspects
149 as determinants of the national innovative capacity: common facilities such as public institutions, resources
150 committed, policies that support innovation; the environment for innovation in the industrial clusters of a nation;
151 and the quality of the relationships amongst the capacity to narrow the gap between research, the companies
152 and the collective efforts that contribute to an entire set of specialized personnel and technology. The innovative
153 performance of economies results from the interaction among these three categories. The national innovative
154 Evaluating The Determinants Of National Innovative Capacity Among European Countries

155 4 Global Journal of Management and Business Research Vol- 156 ume XI Issue XI Version I November 2011

157 capacity is supported by the innovation systems' approach, amongst others. This systemic innovation approach
158 has brought with it new knowledge about the performance, as well as the innovative and economic capacity of
159 the countries.

160 To be innovative, a country requires, first and foremost, a well-functioning national innovation system1.
161 It secondly requires a favourable social climate for innovation (Belitz et al., 2008). Theseauthors present a
162 composition of the innovation indicator for Germany, 2008; composed by aninnovation system and social climate
163 for innovation.

164 The first indicator is composed of education (highly qualified individuals), and R&D (new knowledge),financing

6 CONCEPTUAL MODEL AND HYPOTHESES

165 (sufficient capital), that together are responsible for impelling networking (from partners), competition, implementation and demand market. The social climate for innovation (second indicator) is related to public opinion 166 on the process change, social capital, trust, and science and technology.

167 For Natário et al. (??007), a country's national economic capacity depends on that country's institutional 168 efficiency, its national culture and its innovation framework. The primary differences in the level of innovative 169 capacity are associated with the efficient functioning of the national innovation systems. This requires a 170 combination of the economic framework and the different institutions of the countries, in the determination of 171 the direction and ratios of the innovative activities, a strong national culture for innovation and infrastructures 172 supporting innovation.

173 To measure the innovative capacity, Matheus and Hu (2005) and Hu and Matheus (2008), applied the ratio of 174 the take-up of patents, issued by the US Patents and Trademarks Office (USPTO). For these authors, patents 175 are widely recognized as providing a reliable and unbiased indicator of the innovation effort of a country. The 176 adoption of patenting activities by Chinese firms and organizations at the USPTO were used as a measure 177 of China's National Innovative capacity (Griliches, 1990; ??rajenberg, 1990) ??008). A number of previous 178 studies (Archibugi and Pianta, 1996; ??mith, 2005) have assessed the strengths and weaknesses of different 179 technology indicators, pointing out that R&D and patents have limited relevance in the innovative activities of 180 some manufacturing, and most service, sectors, resulting in a serious underestimation of the extent of innovative 181 efforts in these industries. In their empirical analyses, these data have the advantage of being available over an 182 extended period of time (time series data) for firms, industries and countries (Bogliacino and Pianta, 2009).

183 There is little doubt that patenting indicators cannot be considered as an innovation performance indicator. 184 First, as several studies have illustrated, the use of patents is a volatile variable, varying according to the 185 industries characteristics ??Winter,1987). Therefore, it is not totally accurate to consider patents as an innovation 186 performance indicator, much less the innovation performance indicator. For this reason, the EIS 2008 no longer 187 labelled patents as an output indicator, but rather a throughput indicator (Hollanders and van Cruyzen, 2008).

188 Effectively, a new methodology has been used for the EIS 2008 report that is intended for use in the 2009 and 189 2010 reports, following a better understanding of the innovation process. The revision of the EIS methodology 190 was a direct result of the challenges discussed in the EIS 2007 report to: 1) measure new forms of innovation; 191 2) assess overall innovation performance; 3) improve comparability at national, regional and international levels; 192 and 4) measure progress and changes over time. The purpose of this revision has developed dimensions that 193 brought together a set of related indicators to provide a balanced assessment of the innovation performance. The 194 blocks and dimensions have been designed to accommodate the diversity of different innovation processes and 195 models that occur in different national contexts (Hollanders and van Cruyzen, 2008).

196 Thus, it appears that under the new methodology used by EIS, patents that were in the previous Community 197 Innovation Survey included in the definition of indicators "OUTPUT -Intellectual property" will be considered 198 "Throughput" (as stated) indicators, or one of the dimensions used to capture the innovation efforts of firms. In 199 view of this, and attempting to contemplate these concerns, to measure the This dimension captures the success of 200 innovation by the number of firms that have introduced innovations onto the market or within their organizations. 201 It covers both technological innovations and non-technological. Consequently, the variables considered to measure 202 innovation were SMEs introducing product or process innovations (% of SMEs), SMEs introducing innovations 203 that are marketing or organisational (% of SMEs); reduced labour costs (% of firms) and the reduced use of 204 materials and energy (% of firms).

206 5 III.

207 6 CONCEPTUAL MODEL AND HYPOTHESES

208 With the understandings that emanate in the theoretical foundations, the following dimensions, or groups of 209 factors, are considered determinants of the territorial innovative capacity (Figure 1): institutional efficiency, 210 based on the commitment and performance of the institutions, national culture, human capital, innovation's 211 workers skills and technological intensity, as well as the financial resources for innovation, and linkages and 212 entrepreneurship.

213 The national innovative performance is conditioned by the specific characteristics of each country on the 214 basis of five dimensions. In this paper, five hypotheses are proposed: the first is related to the influence of the 215 institutional efficiency on innovative capacity, the second pertains to the role of national culture, the third refers 216 to the influence of the innovation's infrastructures in the promotion of innovative capacity, the fourth is qualified 217 by the financing support of innovation and the fifth is associated with the linkages and cooperation networks 218 used to stimulate/promote the innovation capacity.

219 Academic institutions are increasingly seen as influencers in the innovation capacity in a triple perspective or 220 mission: triple helix (Vang-Lauridsen et al. 2007) acting as a spiral of knowledge capitalization. They produce 221 and coordinate the available scientific and technological knowledge; they provide superior graduation and skills 222 for the industry, and through interaction with the industry and the creation of incubators, directly contribute 223 to the development of the region (Vang-Lauridsen et al., 2007).Relying on the innovation systems' approach of 224 Lundvall (1992), ??elson (1993), Edquist (1997), ??undvall et al., (2006) and Asheim and augment innovation

225 (creation, diffusion and appropriateness) and promote competitiveness of this country; one can admit that the
226 efficient functioning of these systems is associated with its institutional efficiency.

227 The specific institutional factors setting prevailing in a region plays a significant role in regard to the formation
228 of a RIS (Regional Innovation System) and one of five primary sub-systems of the RIS suggested by ??ripl (2006).
229 The focus is on both formal institutions (such as laws, regulations, among others) and informal institutions
230 (values, practices, routines, among others). Institutions matter, because they shape the behaviour of actors and
231 the relationships between them. Factors such as the prevalent patterns of behaviour, values and routines, culture
232 of cooperation and attitudes towards innovation constitutes the key factors of a region's distinct institutional
233 endowment ??Tripl, 2006).

234 To test this hypothesis, we considered, as measurement variables, the stability and absence of violence and
235 terrorism, government efficiency, regulatory quality, effective rule of law, control of corruption and voice and
236 accountability, as defined by Evans and Rauch (1999) and Kaufmann et al. (2008), who calculated an index of
237 these variables for different countries. Therefore, the first hypothesis is:

238 H1 : Institutional efficiency has a positive influence on innovative capacity.

239 Evaluating The Determinants Of National Innovative Capacity Among European Countries Coenen (2006),
240 and considering that the national innovation system is defined as a complex set of actors (companies, and
241 institutions), that whether in interaction or assembled, they are organized to

242 **7 Global Journal of Management and Business Research Vol-** 243 **ume XI Issue XI Version I November 2011**

244 Another determinant of national innovative capacity is the national culture, which influences the relationships,
245 the constitution of innovation and cooperation networks, as well as the innovation system, and therefore, the
246 innovative capacity. ??orter (1990Porter (, 1998)) and Dunning (1998) reiterated the importance of the national
247 elements in international localization and the significance of the clusters to promote competitive advantage. The
248 conditions to innovate are not applied universally, thus, each nation must determine its own characteristics in
249 light of its own history, cultural values.

250 Hence, to measure the influence of national culture upon innovative capacity, the cultural dimensions of
251 Hofstede (1987) were taken into consideration. The first of these dimensions is Power Distance that reflects the
252 capacity of a society to accept an asymmetrical distribution of power; it varies from country to country. The
253 second dimension is Individualism, which may be apprehended as the importance that is given to the objectives
254 and individual efforts, as opposed to the objectives and collective efforts. The third is Uncertainty Avoidance, or
255 the amount of uncertainty about future events that people of a certain national culture are willing to accept. The
256 fourth is Masculinity that reflects the level of assertiveness promoted in the national culture. These dimensions,
257 when taken together, allow for the classification and distinguishing of national cultures.

258 The definition of the second hypothesis rests upon a body of literature which includes papers by Hofstede
259 (1987), Ronen and Shenkar (1985), Kogut and Singh (1988) and Schneider and Barsoux (1997). The variables
260 of significance correspond to Hofstede's cultural dimensions, namely: power distance, uncertainty avoidance,
261 individualism and masculinity. In the face of these considerations, the following hypothesis was established:

262 H2: The Dimensions of National Culture have a positive influence on innovative capacity. The innovation's
263 collective infrastructure is the third pillar of national innovative capacity, according to several authors (Asheim
264 and Coenen, 2006;Stern et al., 2002; ??iddel and Schwer, 2003; ??tern et al.,2001; ??uarez-Villa, 1990, 1997).
265 The creation of new knowledge is heavily dependent on a sufficient number of qualified scientists and engineers;
266 for diffusion to take place, what matters most is the competence and talent of the workforce. In this sense, the
267 works qualifications are essential for the success, or failure, of a country's innovative efforts in the creation and
268 diffusion of new knowledge.

269 Territories acquire great value from their innovation dynamics, depending on their capacity to create,
270 disseminate and reproduce knowledge for products and services offered on the market in the creation of value.
271 These dynamics are favored by the concentration of knowledge based, highly technological activities that employ
272 human resources with high levels of education and qualification in the science & technology domain, such as the
273 high-tech and service sectors. The highly qualified individuals (education) are key players in innovation (Belitz
274 et al., 2008). Consequently, the qualified human resources, in conjunction with an environment that stimulates
275 intensive learning processes in R&D, may combine previous knowledge and explore new possibilities (Laranja,
276 2001), as well as stimulate innovation and creativity (Davenport and Prusak, 1998;PNUD, 2001).

277 According to the literature, human resources are a key element of innovation. Innovation growth depends on
278 the quality and availability of knowledge. Thus, it is a fundamental the qualification of human resources and the
279 participation in life-long learning. In addition, the dynamic of learning and training influences the innovative
280 capacity of the territories (Lundvall, 1992 The creation of new knowledge may be stimulated through the increase
281 of public and managerial R&D, as well as through the investment in information and communication technologies
282 (ICTs). Countries make interactions that affect each other's performance on economics, politics and culture, due
283 to the development of information technologies (Huang and Shih, 2009).

284 As largely emphasized in the literature, ICTs are vehicles for process innovation. The effects of ICTs on a firms'
285 competitiveness does not only regard process innovation, but also influences product innovation, by stimulating

8 METHODOLOGY AND RESULTS

286 product differentiation, the development of new market niches, and directly allowing the implementation of new
287 technological products (Camagni and Capello, 2005). Therefore, at the territorial level, ICTs spontaneously act
288 on accessibility, creating the ability to overcome territorial periphery and the generation of the popular perception
289 of "dead of distance" (Castells and Hall, 1994;Camagni and Capello, 2005).

290 For Mathews and Hu (2007), the significant effect of public R&D expenditures emerges as an important
291 determinant of the degree of specialization of the countries; it can be seen as a source of innovation.

292 As a result, they examine inputs in the form of R&D expenditures to measure the national innovative capacity
293 of a country. In turn, Hu and Mathews (2005) documented the important role of public R&D expenditures in
294 acting as a steering mechanism for the private sector.

295 Private credit conditions and venture capital are considered obstacles or vehicles for the development of
296 innovations. To test this hypothesis, we considered Business and Public expenditures on R&D (percentage
297 of GDP), Venture capital (% of GDP), Private credit (relative to GDP) and IT expenditures (% of GDP) as
298 measurement variables. These considerations led us to frame the fourth hypothesis of the study as:

299 H4: Financing resources for innovation have a positive influence on Innovative Capacity.

300 Another relevant aspect in the innovative performance of the territories is the coordination approach of
301 the innovation activities: individually or in cooperation. The collaboration and the behavior in cooperation
302 to innovate are modalities which present many benefits: the sharing of risks and costs which the innovation
303 entails; accessing new and different markets; obtaining additional fundamental resources for innovation; accessing
304 information, skills and specialists; and reducing development time for innovations ??Von Stamm, 2005).

305 The related R&D management literature stresses the necessity for the interaction among organizations to
306 bring forth the progress of technological innovation between developers and users of new technology to enhance
307 development (Huang and Shih, 2009).

308 Schiuma and Lerro (2008) argued that innovation requires long-term cooperation between investors, en-
309 trepreneurs, researchers, firms, public authorities and consumers. Networking is the synergetic relationships
310 that link the stakeholders within a region, as well as the external innovation players. It is one of three primary
311 dimensions affecting a regional innovation capacity.

312 Effectively, the learning process is an interactive characteristic and involves networking among firms, as well
313 as dynamism in local reworks. This requires the development of linkages, networks and cooperation between
314 different actors (Lundvall, 1992).

315 Within a territory, there is particular importance to promote regional innovation, the artificial creation of
316 the milieu through technological parks and cooperation between the various local actors and the network linkage
317 (Landabaso, 1997). Many studies have illustrated that cooperation relationships are an efficient vehicle to promote
318 innovation and competitiveness in a region or territory ??Lundvall,1992; ??dquist, 1997;OECD, 1997;Bramanti,
319 1999 The network relationships of cooperation facilitate the production and transmission of the knowledge flow,
320 the innovative performance determination of the companies and the territorial innovation process' influence.
321 Huang and Shih (2009) amplified that the influence of national innovative capacity requires a reinforcement of
322 the internal elements. In addition, they recommend concentrating on the interaction between cohesive countries.
323 Developing networks represents a method to increase the amount of accessible knowledge and improves the
324 innovation capacity (Schiuma and ??erro, 2008). In face of these considerations, the following hypothesis was
325 established:

326 H5 : The Systems of Interactions and Entrepreneurship have a positive influence on Innovative Capacity.

327 IV.

328 8 METHODOLOGY AND RESULTS

329 The primary data source used to evaluate the national innovative capacity was the European Innovation
330 Scoreboard for 2008. This database contains country innovative activity and performance data and is revised
331 annually.

332 The method used for the analysis is based on the application of a cluster analysis, to group the countries
333 according to innovative capacity, measured by the level of innovation output. To verify the hypothesis, we applied
334 multiple means comparison tests to distinguish the unique characteristics of each cluster. This methodology
335 groups the countries according to their level of product and process innovation, marketing and organizational
336 innovations, innovations that reduce labor cost and innovations that reduce the use of materials and energy.

337 The groups constituted of countries with similar records and those with dissimilar records. Considering that
338 similarities are a set of rules that serve as criteria for grouping or separating items, in the present case, the
339 SMEs introducing products or process innovations; SMEs introducing marketing or organizational innovations;
340 reduced labor costs; and, reduced use of materials and energy were considered. This methodology maximizes
341 the homogeneity of countries within a group and constitutes groups that are heterogeneous to each other, by
342 minimizing the variance within the groups and maximizing the variance between the groups.

343 The use of cluster analysis proved to be adequate. The variables used to classify the countries were all
344 significant for the final solution estimated. This was verified by conducting an ANOVA analysis (Table 1). The
345 results illustrate that all classification measurements used in this analysis were significant. The value of the
346 significance probability is almost null and permits us to reject the null hypothesis stating that the measurements'
347 are not significant in classifying the countries.

348 The application of the cluster analysis identified four country groups. The first consisted of Austria, Germany,
349 Estonia and Luxembourg; the second consisted of Belgium, Czech Republic, Denmark, Ireland, Italy, Netherlands,
350 Norway and Turkey; the third consisted of Bulgaria, Spain, Hungary, Lithuania, Malta, Poland, Romania and
351 Slovakia; and, the fourth consisted of Cyprus, Greece, France and These four groups presented different patterns
352 in regard to their performance in terms of innovative capacity. The results in Table ?? illustrate that the first
353 cluster has a higher percentage of firms that have conducted an introduction of new products or processes and
354 introduced marketing and organization innovations.

355 The fourth group follows in terms of innovation indicators, but with an emphasis on innovations that reduce
356 labor costs, materials and energy consumption. The second group is less innovating than the first and fourth
357 groups. The third group, on the other hand, illustrates a much smaller innovative profile than the second.

358 **9 Table 3 : Cluster Constitution**

359 To interpret the relationship between the explanatory variables and the dependent variable of innovative capacity,
360 we tested group mean differences regarding the variables considered in the hypothesis.

361 Regarding the importance of the institutional efficiency in the innovative capacity, we may state that Cluster
362 3, with minor innovative capacity, illustrates a

363 Evaluating The Determinants Of National Innovative Capacity Among European Countries Considering
364 the influence of the differences in the dimensions of national culture on innovative capacity, we observe that
365 the countries that constitute Cluster 3, by opposition to the ones that constitute Cluster 1, national culture
366 characterized by a stronger power distance. This stronger power distance, verified in the countries within Cluster
367 3, seem to have a negative innovation influence, possibly due to aspect that is derived from strong power distances
368 like less open communication channels, leading to lesser cooperation, to minor network relationships and to less
369 interaction, which, in turn, limits the country's innovative capacity (Table 5).

370 The results also illustrate that the countries in the Cluster 4 exhibit much higher uncertainty avoidance than
371 countries in Clusters 1 and 2. Being that the characteristics of the countries in Cluster 4 illustrate innovation
372 activities in reducing labor costs and materials an energy use, we can speculate that these cultural characteristics
373 are related to the objectives considered in terms of innovation. Regarding the human resources indicators, we
374 observed that the number of doctoral graduates in S&E and in Social Sciences and Humanities (SSH) is higher in
375 Cluster 4 than all of the other clusters, but the remaining indicators were not found to be significantly different
376 (Table ??). Based on these results, although there were some differences, When we did not see a clear pattern
377 that differentiated the clusters in terms of human resources capabilities.

378 When we look at the financing of innovations, we can see significant differences in Business R&D expenditures
379 (Table 7). In this aspect, the countries in cluster 1 and cluster 2 have higher levels than countries in the cluster
380 3 and 4. In all other aspects, there were no statistically significant differences between the groups. Therefore,
381 business efforts influence innovation performance. In terms of linkages and entrepreneurial efforts, we can see
382 major differences between the groups. In terms of non-R&D innovation expenditures, SME's inhouse innovation
383 activities and innovative collaboration, we observed significant differences between the clusters. More specifically,
384 the countries in Cluster 1 have higher levels on these three aspects of innovation. Cluster 4 also tended to have
385 a higher level, when compared with Cluster 3 (Table 8).

386 **10 DISCUSSION AND CONCLUSIONS**

387 This paper contributes to the existing literature in the way it tests the importance of variables that have not been
388 considered in the innovation scoreboard, namely national cultural aspects and institutional efficiency, together
389 with variables that are normally considered in the scoreboard, such as expenditures and human resources,
390 financing of innovation, linkages and the entrepreneurial efforts of firms. We determined that the primary
391 differences in the level of innovative capacity are associated with the efficient functioning of the different national
392 institutions of the country, a low power distance national culture, doctoral graduates in S&E and SSH, business
393 efforts that finance R&D, firms efforts that develop in-house innovation, the support of non-R&D innovation
394 activities and collaboration among firms to innovate. These results support Hypothesis 1, that stated that the
395 national is influenced by institutional factors, since the aspects of institutional efficiency, the type of regulation,
396 the effective rule of law and the control of corruption levels were found to be significant variables in distinguishing
397 the more innovative countries from the less innovative ones.

398 The second hypothesis stated that the national culture has an influence on the country innovative capacity.
399 This hypothesis was supported, since lower power distance countries were found to have higher innovative capacity
400 then those countries with lower scores. This may suggest that hierarchical societies have less freedom of initiative
401 and communication necessary for collaborative efforts and produce fewer innovations. These results are in line
402 with Hypothesis 3, since the human resources qualifications are relevant for innovation, namely, the level of
403 doctoral graduates in S&E and SSH were higher in more innovative countries, when compared with lesser
404 innovative ones.

405 We found also evidence to support Hypothesis 4, which related innovation to the financing solutions used, since
406 the level of business R&D financing is much higher in countries with better innovative performance indicators.

10 DISCUSSION AND CONCLUSIONS

407 The entrepreneurial efforts to develop in-house R&D and finance innovation in non-R&D activities were also
408 a feature of the more innovative countries, together with the importance of collaboration among firms, thus, in
409 accordance with Hypothesis 5.

410 The practical implications of this study suggest that to stimulate their innovative capacity, countries need
411 a constant commitment to, and active involvement in, their institutions and organizations, the investment in
412 education and qualification, values of openness and commitment to invest and collaborate.

413 This study presents some limitations to the comprehension of the micro mechanisms, which create innovation:
414 a more detailed analysis of the effectiveness of several national innovative strategies. These limitations arise as
415 a pathway for future research and appear to be of great interest to the embodiment of indicators about national
416 and regional innovative strategy. This paper can be developed by enlarging the sample and considering other
417 countries, such as the US and Japan, given their history regarding the innovative capacity.

418 Another field of future research could address the inclusion of micro level variables, to measure the real
419 leveraging of firms present in countries with more innovative capacity. Our future studies will begin to tackle
these challenges.

1 2 3 4 5 6

Figure 1: Evaluating

	1 (n=4)	2 (n=8)	3 (n=8)	4 (n=4)
SMEs introducing product or process innovations	45,9	32,8	19,6	35,1
SMEs introducing marketing or organisational innovations	57,9	39,9	27,2	49,2
Reduced labour costs	13,6	16,0	12,2	20,2
Reduced use of materials and energy	8,4	8,7	10,3	
				17,9

1

Figure 2: Figure 1 :

420

¹© 2011 Global Journals Inc. (US)

²The designation -national innovation systems -refers to enterprises, institutions and surrounding conditions that influence the process by which innovation arise (See Lundvall (1992) and Edquist (1997)).

³© 2011 Global Journals Inc. (US)

⁴© 2011 Global Journals Inc. (US)

⁵© 2011 Global Journals Inc. (US)

⁶© 2011 Global Journals Inc. (US)

	Cluster 1	Cluster 2	Cluster 3	Cluster 4	Dif.
Stability	1,22	0,95	0,88	0,84	
Efficiency	1,67	1,36	0,69	1,12	1>3
Regulatory	1,61	1,32	0,86	1,27	1>3
Ruleoflaw	1,61	1,31	0,67	1,06	1>3
Corruption	1,68	1,31	0,41	1,06	1>3
Accountability	1,32	1,17	0,95	1,15	

6

Figure 3: Table 6 :

	Cluster 1	Cluster 2	Cluster 3	Cluster 4	Dif.
S&E and SSH graduates	34,00	34,56	40,95	34,05	
S&E and SSH doctorate graduates	1,30	0,93	0,74	2,87	1,2,3<4
Population with tertiary education	25,20	25,19	20,14	24,95	
Participation in life-long learning	8,53	11,55	4,74	6,02	
Youth education attainment level	77,05	78,68	80,16	77,57	

Figure 4:

are indicators that have major limitations in understanding the complexity of innovation processes.

However, patents are not only acknowledged as providing a reliable and unbiased indication of the innovation effort being expended by a country, but also regarded as a country's R&D performance (Huang and Shih, 2009). R&D and patents

Figure 5:

Institutional efficiency	National culture	Innovative capacity	Financial resources	Network & entrepreneurship
Stability	Power	Human resources S&E graduates	and SSH	Public R&D
Efficiency	Individual S&E	and SSH	expenditures	Non-R&D innovation expenditures
Regulatory	doctorate		Venture capital	SMEs innovating in-
Rule of Law	Avoidance	Population tertiary education	with Private credit	house
Corruption	Masculinity	Participation in life-long learning	Business	Innovative R&D others
Accountability		Youth education attainment level	IT expenditures	SMEs collaborating with
				Public-private publications

Figure 6:

Evaluating November 2011

Figure 7:

2

Cluster 1	Cluster 2	Cluster 3	Cluster 4
Austria	Belgium	Bulgaria	Cyprus
Germany	Czech Republic	Spain	Greece
Estonia	Denmark	Hungary	France
Luxembourg	Ireland	Lithuania	Portugal
	Italy	Malta	
	Netherlands	Poland	
	Norway	Romania	
	Turkey	Slovakia	

Figure 8: Table 2 :

1

Figure 9: Table 1 :

44

Efficiency

Figure 10: Table 4 .Table 4 :

5

Cultural Dimensions

Figure 11: Table 5 :

7

Figure 12: Table 7 :

8

Entrepreneurship

These results illustrate the importance of entrepreneurial

effort in non- innovation
R&D

expenditures and in developing in-house innovation activities, as well as the need for collaboration between firms.

V.

Figure 13: Table 8 :

421 Innovation Index. Council on Competitiveness, Washington, D.C., March. 46. Ridel, M and Schwer, RK
422 (2003). Regional innovative capacity with endogenous employment: empirical evidence from the U.S. *The Review*
423 of Regional Studies

424 [London] , Washington London . Pinter.

425 [National Systems of Innovation: a Comparative Study] , *National Systems of Innovation: a Comparative Study*
426 University Press.

427 [Pontikakis] , D Pontikakis .

428 [Davenport and Prusak ()] , T Davenport , L Prusak . 1998.

429 [Archibugi and Coco ()] , Archibugi , A Coco . 2005.

430 [Archibugi and Pianta ()] , Archibugi , M Pianta . 2009.

431 [Lundval and Ba; Patarapong (ed.) ()] *Asia's Innovation Systems in Transition*, Lundval , Ba; Patarapong .
432 Vang, J (ed.) 2006. Cheltenham: Edward Elgar.

433 [Evans and Rauch ()] 'Bureaucracy and growth: a cross -national analysis of the effects of "Weberian" state
434 structures on economic growth'. P Evans , J Rauch . *American Sociological Review* 1999. 64 p. .

435 [Hu and Mathews ()] 'China's national innovative capacity'. M-C Hu , J A Mathews . *Research Policy* 2008. 37
436 p. .

437 [McDonnell and Geoghegan ()] *Conceptualising a National Innovation System: Actor, Roles and Incentives.*
438 *CISC Working Paper, 16. Porter, M (1990). The Competitive Advantage of Nations*, T McDonnell , W
439 Geoghegan . 2005. Free Press.

440 [Asheim and Coenen ()] 'Contextualising regional innovation systems in a globalising learning economy: on
441 knowledge bases and institutional frameworks'. Asheim , L Coenen . *Journal of Technology Transfer* 2006. 31
442 (1) p. .

443 [Belderbos et al. ()] 'Cooperative R&D and firm performance'. R; Belderbos , Carree , B Lokshin . *Research
444 Policy* 2004. 33 p. .

445 [Hofstede ()] *Culture and Organizations: Software of the Mind*, G Hofstede . 1987. United Kingdom: McGraw-
446 Hill.

447 [Belitz et al. ()] 'Deficits in education endanger Germany's innovative capacity'. H; Belitz , M Clemens , Jens
448 Schmidt-Ehmcke , Werwatz . *DIW Berlin* 2008. 14 (4) p. . German Institute for Economic Research (A)

449 [Natário et al. ()] 'Determinants of the National Innovative Capacity: An Analysis to the European Reality'. M;
450 Natário , J; Couto , Tiago , A Braga . *Proc. 5th International Symposium on Management of Technology,-
451 Managing Total Innovation and Open Innovation in the 21st Century*, J; Xu, Q Wu, X (ed.) (5th International
452 Symposium on Management of Technology,-Managing Total Innovation and Open Innovation in the 21st
453 CenturyHangzhou; China) 2007. p. .

454 [Lorenz ()] 'Developing indicators for skills and innovation'. E Lorenz . *TrandChart Policy Workshop on Skills
455 for Innovation*, 2005.

456 [Arundel and Hollanders ()] 'Differences in socio-economic conditions and regulatory environment: explaining
457 variations in national innovation performance and policy implications'. A Arundel , H Hollanders . *Inno-
458 Metrics* 2007. (Thematic Paper)

459 [Ganzaroli et al. ()] *Does business succession enhance firms' Innovation capacity? Results from an exploratory
460 analysis in Italian SMEs*, A Ganzaroli , Fiscato , L Pilote . 2006. Ottobre. Università degli Studi di Milano
461 (Working Paper n. 2006-29)

462 [Mathews and Hu ()] 'Enhancing the role of universities in building national innovative capacity in East Asia:
463 the case of Taiwan'. J A Mathews , M-C Hu . *World Development* 2007. 35 (6) p. .

464 [Evaluating The Determinants Of National Innovative Capacity Among European Countries] *Evaluating The
465 Determinants Of National Innovative Capacity Among European Countries*,

466 [Bramanti ()] *From space to territory: relational development and territorial competitiveness*, *Revue d'Economie
467 Régionale et Urbaine*, A Bramanti . 1999. 3 p. .

468 [Camagni and Capello ()] 'ICTs and territorial competitiveness in the era of internet'. Camagni , R Capello .
469 *The Annals of Regional Science* 2005. 39 p. .

470 [Howells ()] *Innovation and regional economic development: a matter of perspective?* *Research Policy*, J Howells
471 . 2005. 34 p. .

472 [Fan (2008)] *Innovation Capacity and Economic Development: China and India*. UNI-Wider, P Fan . 2008.
473 2008/31, March.

474 [Henttonen (2006)] 'Innovation in Complex Networks -the State -of-the-Art and propositions for Further
475 Research'. K Henttonen . *The innovation Pressure, International ProAct-Conference*, (Tampere, Finland)
476 2006. March. p. .

10 DISCUSSION AND CONCLUSIONS

477 [Bogliacino and Pianta ()] *Innovation performances in Europe: a long term perspective*. Pro Inno Europe,
478 Bogliacino , M Pianta . 2009. (Inno Metrics)

479 [Archibugi and Pianta ()] *Innovation surveys and patents as technology indicators: the Technological Strategies*,
480 Archibugi , M Pianta . 1996. Paris: OECD. p. .

481 [Innovationperformances in Europe: a long term perspective Pro Inno Europe (March)]
482 'Innovationperformances in Europe: a long term perspective'. Pro Inno Europe, March. European
483 Commission Report.

484 [Hu and Mathews ()] 'Innovative capacity in East Asia'. M-C Hu , J A Mathews . *Research Policy* 2005. 34 (9)
485 p. .

486 [Dunning ()] 'Location and the multinational enterprise: a neglected factors'. J Dunning . *Journal of International
487 Business Studies* 1998. 25 (1) p. .

488 [Measuring technological capabilities at the country level: a survey and menu for choice Research Policy]
489 'Measuring technological capabilities at the country level: a survey and menu for choice'. *Research Policy*
490 175 p. 194.

491 [Oecd ()] *National Innovation System*, Oecd . 1997. Paris: OECD Publications.

492 [Huang and Shih ()] 'National innovative capacity in the international technology diffusion: the perspective of
493 network contagion effects'. H-C Huang , H-Yu Shih . *OECD/OCDE/WKP. 15 (487 Proc. PICMET*, USA Oregon,
494 Jaumotte (ed.) (PICMETPortland) 2009. 2009. 2006. (Maintaining Switzerland's Top Innovation Capacity)

495 [Lundvall ()] *National Systems of Innovation: Towards a Theory of Innovation and Interactive Learning*, B A
496 Lundvall . 1992. London: Pinter Publishers.

497 [Griliches ()] 'Patent statistics as economic indicators: a survey'. Z Griliches . *Journal of Economic Literature*
498 1990. 25 p. .

499 [Oecd ()] *Perspectives de L'OCDE de la Science, de la Technologie et L'Industrie*, Oecd . www.oecd.org/dsti/sti 2000. 2000.

500 [Laranja ()] 'Que politicas de ciéncia e tecnologia para uma nova economia do conhecimento e da inovação em
501 Portugal?'. M Laranja . *Actas IV Conferência sobre Economia Portuguesa Como está a Economia Portuguesa*,
502 2001.

503 [Doloreux ()] 'Regional innovation systems in Canada: a comparative study'. D Doloreux . *Regional Studies* 2004.
504 8 (5) p. .

505 [Pnud ()] *Relatório de Desenvolvimento Humano*, Pnud . 2001. 2001. Nova Iorque: Oxford University Press.

506 [Hollanders and Van Cruyse (2008)] 'Rethinking the European Innovation Scoreboard: Recommendations for
507 further improvements'. H Hollanders , A Van Cruyse . *workshop on 'Improving the European Innovation
508 Scoreboard methodology*, (Brussels) 2008. June.

509 [Castells and Hall ()] *Technopoles of the World: The Making of The 21st Century Industrial Complexes*, Castells
510 , P Hall . 1994. London: Routledge.

511 [Porter ()] *The Competitive Advantage of Nations: with a new introduction by the author*, M Porter . 1998.
512 London: Macmillan Business.

513 [Furman et al. ()] 'The determinants of national innovative capacity'. Jl; Furman , Porter , S Stern . *Research
514 Policy* 2002. 31 p. .

515 [Kogut and Singh ()] 'The effect of national culture on the choice of the entry mode'. Kogut , H Singh . *Journal
516 of International Business Studies* 1988. 19 p. .

517 [Ba and Johnson ()] 'The learning economy'. Lundvall Ba , B Johnson . *Journal of Industry Studies* 1994. 1 p. .

518 [Freeman ()] 'The national systems of innovation in a historic perspective'. C Freeman . *Cambridge Journal of
519 Economics* 1995. 18 p. .

520 [Porter and Stern ()] *The New Challenge to America's Prosperity: Finding from the*, Porter , S Stern . 1999.

521 [Kaufmann et al. ()] 'The promotion of innovation in regional policy: proposals for a regional innovation
522 strategy'. D; Kaufmann , Kraay , M Mastruzzi . *Entrepreneurship & Regional Development* 2008. 1996-
523 2007. June. 31. 1997. 9 (4654) p. . (World Bank Policy Research Working Paper) (Governance Matters VII:
524 Aggregate and Individual Governance Indicators)

525 [Camelo-Ordaz et al. ()] 'The relationship between top management teams and innovative capacity in companies'.
526 C Camelo-Ordaz , Hernández-Lara , R Valle-Cabrera . *Journal of Management Development* 2005. 24 (7/8)
527 p. .

528 [Neely and Hii (ed.) ()] *University of Cambridge, Centre for Business Performance, Judge Institute of Manage-
529 ment Studies*, Neely , J Hii . Nelson, R (ed.) 1999. 1993. (The Innovative Capacity of Firms)

530 [Working Knowledge: How Organizations Manage What They Know] *Working Knowledge: How Organizations
531 Manage What They Know*, Boston: Harvard Business School press.